Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать. Алексей Макарушин

Читать онлайн книгу.

Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать - Алексей Макарушин


Скачать книгу
Конкуренция вела к эволюции на все более и более высоких порядках разумности и когнитивных способностей. Одной из пружин этого механизма для сложных эукариотических организмов должна служить положительная для живой системы стрессовая стимуляция (гормезис) митохондрий. Несомненно, ключевой стратегией выживания, помимо адаптации, является использование информации с целью активного изменения окружающей среды для достижения конкурентного преимущества. Люди достигли это тысячелетия назад, осознав, что должны жить здоровыми на протяжении взрослой жизни. Представляется, что, удалив факторы горметического стресса, сделав свою жизнь слишком комфортной, мы не получили оптимальной квантовой эффективности митохондрий и оказались хуже приспособленными к достижению и поддержанию максимально возможного здоровья. И напротив, сознательное внесение горметических факторов в повседневную жизнь должно приближать нас к этому крайне желательному состоянию.

      Библиографический список

      1. Виноградская И. С., Кузнецова Т. Г., Супруненко Е. А. (2014). Митохондриальная сеть скелетных мышечных волокон. – Вестн. Моск. Ун-та. Сер. 16. Биология № 2, 16–25.

      2. Лейн Н. (2018) Вопрос жизни. Энергия, эволюция и происхождение сложности. – М.: АСТ.

      3. Ноу Л. (2020) Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость. – СПб: Питер.

      4. Блюменфельд Л. А. (1977). Проблемы биологической физики. – М.: Наука.

      5. Dobzhansky T. (1973) Nothing in Biology Makes Sense except in the Light of Evolution. Am. Biol. Teacher35, 125–129.

      6. Pross A. (2012). What is Life? How Chemistry Becomes Biology, Oxford University Press, United Kingdom.

      7. Laughlin S. B., de Ruyter van Steveninck R. R. and Anderson J. C. (1998) The metabolic cost of neural information. Nat. Neurosci. 1, 36–41.

      8. Gatenby, R. A. and Frieden, B. R. (2013). The critical roles of information and nonequilibrium thermodynamics in evolution of living systems. Bull. Math. Biol. 75, 589–601.

      9. Schroedinger E. (1944). What is Life? The Physical Aspect of the Living Cell, Cambride University Press.

      10. Nunn A. V., Guy G. W. and Bell J. D. (2014). The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth. Nutr. Metab. 11, 34.

      11. Lane N. and Martin W. (2010). Theenergetics of genome complexity. Nature 467, 929–934.

      12. Tulving E. (1985). How many memory systems are there? Am. Psychol. 40, 385–398.

      13. Howarth C., Gleeson P. and Attwell D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232.

      14. Harris J. J., Jolivet R. and Attwell D. (2012). Synaptic energy use and supply. Neuron 75, 762–777.

      15. Attwell D. and Laughlin S. B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

      16. Hudetz, A. G. (2012). General anesthesia and human brain connectivity. Brain Connect. 2, 291–302.

      17. Krueger J. M., Frank M. G., Wisor J. P. and Roy S. (2015) Sleep function: toward elucidating an enigma. Sleep Med. Rev. 28, 42–50.

      18. Penrose R. (1994). Shadows of the Mind; ASearch for the Missing Science of Consciousness, Oxford University Press, Great Britain.

      19. Tarlaci S. and Pregnolato M. (2016). Quantum neurophysics: fromnon-living matter to quantum neurobiology and psychopathology. Int. J. Psychophysiol. 103, 161–173.

      20. Al-Khalili J. and McFadden J. (2014). Life on the Edge: The Coming of Age of Quantum Biology, Transworld Publishers, Great Britain.

      21. Lovley D. R. and Malvankar N. S. (2015). Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ. Microbiol. 17, 2209–2215.

      22. Tamulis A. and Grigalavicius M. (2014). Quantum entanglement in photoactive prebiotic systems. Syst. Synth. Biol. 8, 117–140.

      23. Engel G. S., Calhoun T. R., Read E. L., Ahn T. K., Mancal T., Cheng Y. C., Blankenship, R. E. and Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786.

      24. Fassioli F., Dinshaw R., Arpin P. C. and Scholes G.D. (2014). Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 20130901.

      25. Lim J., Palecek D., Caycedo-Soler F., Lincoln C. N., Prior J., von Berlepsch H., Huelga S. F., Plenio M.B., Zigmantas D. and Haue, J. (2015). Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755.

      26. Weber S., Ohmes E., Thurnauer M. C., Norris J. R. and Kothe G.(1995). Light-generated nuclear quantum beats: a signature of photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 92, 7789–7793.

      27. Craddock T. J., Friesen D., Mane J., Hameroff S. and Tuszynski J. A. (2014). The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface 11, 20140677.

      28. Craddock T. J., Priel A. and Tuszynski J. A. (2014). Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? J. Integr. Neurosci. 13, 293–311.

      29. Winkler J.R. and Gray H.B. (2014). Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939.

      30. Hayashi T. and Stuchebrukhov A. A. (2011). Quantum electron tunneling in respiratory complex I. J. Phys Chem. B115, 5354–5364.

      31. Moser


Скачать книгу