Применение элементов искусственного интеллекта в решении прикладных задач. Вадим Николаевич Шмаль
Читать онлайн книгу.объектов. Третий – конвергентные алгоритмы. Конвергентные алгоритмы – это алгоритмы, которые обучаются и имитируются машинами. Четвертый – причинно-следственные алгоритмы. Это алгоритмы, имитирующие физическое поведение. Это самый важный алгоритм машинного обучения. Последний вид – эволюционные алгоритмы. Эволюционные алгоритмы – это системы, имитирующие поведение биологических животных и растений.
Представление знаний
Представление знаний и инженерия знаний позволяют программам ИИ разумно отвечать на вопросы и делать выводы о фактах реального мира, для чего ранее требовались люди.
Следующим крупным прорывом в технологии знаний, который полностью изменит правила игры для каждой существующей сегодня компании, будет инженерия знаний, особенно с точки зрения представления знаний и инженерии знаний.
Мы должны реалистично оценивать влияние, которое он окажет на большую часть работы, которую выполняют люди. Мы все еще находимся в зачаточном состоянии инженерии знаний, и у ИИ просто не было времени и ресурсов, чтобы улучшить его до такой степени, чтобы мы могли использовать его для решения реальных проблем.
Независимо от того, будет ли ИИ развиваться дальше, инженерия знаний – это область, в которой мы можем извлечь выгоду уже сейчас.
Чтобы ускорить развитие этой области, технологические компании должны быть готовы идти на риск и активно взаимодействовать с экспертами по темам, связанным с инженерией знаний. Сама по себе инженерия знаний уже демонстрирует большой потенциал для улучшения многих существующих приложений ИИ.
Представление знаний и рассуждение – это область искусственного интеллекта (ИИ), предназначенная для представления информации о мире в форме, которую компьютерная система может использовать для решения сложных задач, таких как диагностика состояния здоровья или ведение диалога на естественном языке. Применение ИИ можно найти во многих областях, но прежде всего в областях обработки данных, таких как обработка сигналов от датчиков и обработка результатов поиска и документов при обработке больших данных.
Интеллектуальный анализ данных также стал областью, получившей развитие с появлением больших данных. Интеллектуальный анализ данных – это область, связанная с созданием инструментов, которые собирают, анализируют и организуют информацию в упрощенные представления. После сбора информации ее можно использовать для прогнозирования в области финансов, медицины, химии и многих других областях.
Алгоритмы графов, которые представляют собой инструменты интеллектуального анализа данных, могут использоваться для представления данных в компьютерной системе. Это специализированные инструменты, часто основанные на нейронных сетях, которые хорошо подходят для интеллектуального анализа данных. Графические алгоритмы обычно используются для моделирования