Эйнштейн учился без карточек. 45 эффективных игровых упражнений для детей от 0 до 6 лет. Кэти Хирш-Пасек
Читать онлайн книгу.подиуме. Когда интерес ребенка к кукле начинал угасать, перед подиумом поднимался экран, который полностью скрывал куклу. Дальше ребенок видел, как протянутая рука экспериментатора кладет второго Микки Мауса позади экрана, так что с точки зрения логики там теперь должно было быть 2 куклы. Вот какой вопрос занимал профессора Винн: сознает это ребенок или нет? Понимают ли младенцы, что 1 + 1 = 2?
Когда экран опускался, за ним оказывалась… только одна кукла. В науке это известно под названием «невозможное условие». Профессор Винн предварительно изучала реакции младенца, когда он видел сразу 2 куклы, или «ожидаемое условие». Судя по более продолжительному взгляду ребенка на «невозможное условие» и выражение удивления на его личике, когда кукла оказывалась только одна, исследователи сделали вывод, что младенцы умеют «складывать» числа.
Чтобы выяснить, как обстоят у младенцев дела с «вычитанием», исследование проводилось в обратном порядке: вначале показывали две куклы, затем одну убирали. Опять-таки явное удивление при виде «невозможного условия», выражаемое малышом, указывало на рудиментарное понимание вычитания.
Теперь понятно, откуда у исследователей и в новостных заголовках взялась идея о том, что младенцы могут складывать и вычитать. Малыши явно смыслили кое-что в числах – или, по крайней мере, как-то оценивали количество предметов, которые им показывали. Они даже понимали, каким образом это количество можно изменить. Однако прежде чем приходить в неистовый восторг, подумайте о том, что макаки-резус демонстрировали точно такие же способности, когда им показывали аналогичные невозможные условия на примере баклажанов (разумеется, макак больше интересуют баклажаны, чем куклы, изображающие Микки Мауса).
А теперь мы должны задаться вопросом, действительно ли такая реакция является результатом мысленных операций сложения и вычитания, как мы их понимаем. Оказывается, ответить на этот вопрос не так-то просто.
И тут на сцене появляется Джанеллен Гуттенлохер, профессор отделения психологии из Чикагского университета. Она и ее коллеги изучали малышей от 2 до 4 лет, чтобы определить, насколько хорошо они умеют складывать и вычитать. Исследователи, разумеется, не показывают детям развивающие карточки с написанными на них примерами. Они используют то, что дети способны ухватить буквально: трехмерные предметы, которые можно держать в руках и манипулировать ими. Один из исследователей наблюдает, сумеет ли Аманда, возраст которой 2,5 года, сложить 3 и 1. Аманда сидит напротив экспериментатора, который показывает ей 3 красных кубика. Аманда внимательно наблюдает за его действиями, а он в это время накрывает кубики большой коробкой. Чтобы убедиться в том, что Аманда понимает суть игры, ее просят показать экспериментатору с помощью второго набора кубиков, сколько кубиков спрятано под коробкой. Аманда с удовольствием исполняет просьбу. Она кладет в ряд 3 кубика на своей стороне стола. Не убирая коробку, экспериментатор добавляет к трем еще один