Карьера продакт-менеджера. Все что нужно знать для успешной работы в технологической компании. Джеки Баваро

Читать онлайн книгу.

Карьера продакт-менеджера. Все что нужно знать для успешной работы в технологической компании - Джеки Баваро


Скачать книгу
таких показателей, как количество активных пользователей в день (DAU, daily active users), в месяц (MAU, monthly active users) или их соотношение (DAU/MAU). Также сюда относятся метрики использования, такие как количество минут просмотра видео на YouTube.

      • Рекомендации (referral): готовность клиентов советовать продукт другим пользователям. Можно оценивать, например, по количеству отправленных приглашений. Многие компании также отслеживают индекс потребительской лояльности (NPS, net promoter score), рассчитываемый на основе ответов на вопрос: «Какова вероятность, что вы порекомендуете наш продукт?» Этот вопрос показывает, насколько успешным может быть сарафанное радио.

      • Доход (revenue): объем дохода. Например, стоимость подписки, приобретение продукта или продажа рекламы. Здесь важно отслеживать пожизненную ценность клиента (lifetime value, LTV), чтобы сравнить ее со стоимостью его привлечения (cost of acquiring a customer, CAC). Существует универсальное правило – соотношение LTV: CAC должно быть не менее 3: 1. Когда действующий клиент отменяет подписку, это называется оттоком.

      Обратите внимание, что эти метрики тесно связаны с концепцией «Путь клиента» (с. 50). Они подходят для широкого спектра продуктов, но, возможно, их придется слегка доработать, чтобы они отвечали задачам именно вашего бизнеса.

      A/B-тестирование и статистика

      A/B-тестирование, также известное как сплит-тестирование или онлайн-эксперимент, представляет собой живой эксперимент с имеющейся базой пользователей. Одна случайная выборка пользователей получает одну версию продукта, так называемый вариант, а другая – второй вариант. Затем вы сравниваете, какой из вариантов лучше сработал для достижения ваших целей, например увеличения кликабельности или конверсии. Как правило, по завершении теста версия, показавшая лучшие результаты, распространяется среди 100 % пользователей.

      Одновременно тестируя продукт на двух случайных группах пользователей, вы можете быть уверены, что любые различия между результатами групп будут обусловлены разницей между версиями. Если вместо этого предложить модифицированную версию всем пользователям, а потом сравнить полученные значения с показателями предыдущего месяца, вам будет сложно понять, какие изменения вызваны внешними факторами, например сезонностью или рекламной кампанией конкурентов, а какие нет.

      Некоторые A/B-тесты сравнивают две альтернативы какой-то функции, например синий или зеленый цвет кнопки. Другие сопоставляют текущее положение дел с возможными изменениями, такими как добавление окна поиска в верхней части страницы.

      A/B-тестирование невероятно полезно, потому что оно дает реальную информацию о том, как люди действуют на самом деле, а не о том, как они, по их мнению, поступят. Оно наиболее точно отображает действительный эффект от вашего продукта.

      Такие мелочи, как надпись на кнопке в форме регистрации, могут значительно повлиять на важные показатели, например количество зарегистрировавшихся пользователей. С другой стороны, A/B-тестирование увеличивает сроки выполнения проекта и может сбить с толку пользователей или вызвать у них раздражение,


Скачать книгу