Сто лет недосказанности: Квантовая механика для всех в 25 эссе. Алексей Семихатов
Читать онлайн книгу.с предметом нашего интереса (именно поэтому ускоритель элементарных частиц не имеет смысла без адекватной системы детекторов).
Немедленно возникла проблема с пониманием происходящего. Стало ясно, что электроны не сидят сиднем в тесных объятиях с ядром, ведь тогда атом не оказался бы настолько больше ядра. А механика – та, в использовании которой мы за XVIII и XIX вв. натренировались на летящих предметах и планетах, – сообщает, что единственная возможность для электрона держаться на расстоянии от ядра состоит в том, чтобы вокруг ядра летать. Законы электричества вроде бы поддерживают эту идею, обеспечивая необходимое притяжение между положительными и отрицательными зарядами{5}. Но те же законы электричества сообщают и плохую новость: если электрический заряд движется по искривленной траектории, он непременно излучает энергию в виде электромагнитных волн. Взять эту энергию можно только из одного источника – энергии движения самого электрона. И вся она немедленно на это и расходуется. Через крохотные доли секунды электрон должен отдать почти всю энергию и оказаться «на ядре». Упасть. Атом, согласно всем правилам, известным около 1911 г., не должен существовать (а мир вокруг нас должен сколлапсировать внутрь себя).
А раз атомы все-таки существуют, значит, какие-то из известных правил должны оказаться неверными в применении к электронам и всему подобному. Те «старые» правила называются в совокупности классическими – классической механикой, или классическими законами физики, или классической физикой. В этом контексте прилагательное «классический» является антонимом «квантового». Наша вселенная на самом деле – квантовая: в ней действуют квантовые, а не классические законы. Правда, в огромном числе случаев, охватывающих почти весь наш ежедневный опыт, мир кажется классическим. Тем не менее ключевые составные элементы внутри окружающих вещей и нас самих – атомы, да собственно, и молекулы – существуют в силу квантовых правил и управляются квантовыми правилами.
В применении к атомам квантовые правила приводят к дискретным значениям энергии. Для простоты возьмем атом водорода: в этом простейшем атоме с одним электроном ядро, кстати, тоже простейшее – это просто один протон. (Вспоминая свое детское недоумение при первом знакомстве с задачей записать четырьмя буквами – «в четырех клеточках» – слова «сушеный виноград», я предлагаю записать шестью буквами слова «ядро атома водорода».) Да, ядро и электрон притягиваются друг к другу (без этого атомов уж точно не было бы, но детали того, что электрон при этом делает, не слишком ясны. На первый план поэтому выходит «экономное» описание в терминах энергии, часто позволяющее обходиться без больших подробностей. На языке энергии можно говорить о притяжении между положительным и отрицательным зарядами: когда заряды близки друг к другу, их энергия меньше, а когда они расходятся, энергия такой
5
Никакие другие силы, действующие между протонами ядра и электронами, не могут обеспечить их совместного проживания. Гравитационное притяжение между ними составляет фантастически малую величину, учет которой никакого смысла не имеет.