Все науки. №7, 2024. Международный научный журнал. Ибратжон Хатамович Алиев
Читать онлайн книгу.средней скорости в том же диапазоне рентгеновского излучения (125) и соответствующим напряжением (126).
Исходя из полученного результата, при учёте наличия 5% от всего имеющегося излучения от приходящей мощности в том числе в составе солнечной постоянной, легко определить значение принимаемой мощности (127), поступление которого будет регулироваться согласно закону (128), исходя из выведенного процентного соотношения, с единичной величиной функции (129) и графиком (Рис. 2).
Рис. 2. График мощности
Закон силы тока определяется уместно, исходя из функций уменьшения и увеличения численности каждого из ядер по отношению к каждому из ядер, с соответствующими напряжениями (130), с единичным выражением (131) и графиком силы тока (Рис. 3).
Рис. 3. График силы тока
Единичное значение для напряжения в данном случае вычисляется из отношений мощности и силы тока (132), как и функция напряжения из отношения функций (133), с выводимым графиком (Рис. 4).
Рис. 4. График напряжения
Таким образом были сформированы все необходимые закономерности, графики, единичные значения, демонстрирующие результат исследования.
Заключение
В ходе исследования было доказано, что облучение космическим излучением и в частности, бомбардировка альфа-частицами сказывается отрицательно на действие всей пластины в целом. В данном случае, образуются ядра радиоактивного фосфора и серы, увеличивающие своё количество со временем, а также превращающие пластину в источник гамма-излучения в малом количестве. Однако, указанный процесс проходит на протяжении длительного времени, так для полного выхода из строя пластины необходимо 13 992 887 670 лет 22 дня 1 час 42 минуты 20,09399 секунды.
Использованная литература
1. Min Young Kim et al, Designing efficient spin Seebeck-based thermoelectric devices via simultaneous optimization of bulk and interface properties, Energy & Environmental Science (2021). DOI: 10.1039/D1EE00667C
2. Larissa Y. Kunz et al. A phytophotonic approach to enhanced photosynthesis, Energy & Environmental Science (2020). DOI: 10.1039/D0EE02960B
3. Juan Forero-Saboya et al. Understanding the nature of the passivation layer enabling reversible calcium plating, Energy & Environmental Science (2020). DOI: 10.1039/D0EE02347G
4. Mark Z. Jacobson, The Health and Climate Impacts of Carbon Capture and Direct Air Capture, Energy & Environmental Science (2019). DOI: 10.1039/C9EE02709B
5. Aliyev I. X., Abdurakhmonov S. M. The algorithm of complex analysis of resonant nuclear reactions. Материалы I Международной научной конференции «Современные проблемы науки, техники и производства». НИИ «ФРЯР». Electron Laboratory LLC. Ridero. С. 193—217 с.
6. Алиев И. Х. Алюминиевая резонансная ядерная реакция. Международный научный журнал «Все науки». Научная школа «Электрон», Ридеро. №3, 2022. 24—44 с.
7. Leah Morris et al, A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions, Energy & Environmental Science (2018). DOI: 10.1039/C8EE02499E
8. Koffi P. C. Yao et al, Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction, Energy & Environmental Science (2019). DOI: 10.1039/C8EE02373E
9. Adam Wegelius et al. Generation of a functional, semisynthetic [FeFe] -hydrogenase in a photosynthetic microorganism, Energy & Environmental Science (2018). DOI: 10.1039/C8EE01975D
10. Guangzu Zhang et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting, Energy & Environmental Science (2018). DOI: 10.1039/C8EE00595H
11. Xiaoliang Zhang et al. Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode, Energy & Environmental Science (2017). DOI: 10.1039/C7EE02772A
12. Michael, L., Miller., Klaus, Johannes, Reygers., Stephen, J., Sanders., P., Steinberg. (2007). Glauber Modeling in High Energy Nuclear Collisions. Annual Review of Nuclear and Particle Science, 57 (1):205—243.