NLP без прикрас: Секреты общения с машинным мозгом. Артем Демиденко

Читать онлайн книгу.

NLP без прикрас: Секреты общения с машинным мозгом - Артем Демиденко


Скачать книгу
и тематическое моделирование.

      4. Векторизация текста: Переход к числовому представлению

      Для последующего анализа компьютер должен представить текст в числовом формате. Векторизация текста – это процесс преобразования текстовой информации в векторы, которые могут использоваться для различных машинных алгоритмов. Существует несколько подходов к векторизации, включая:

      – Модель "мешка слов": Метод, который рассматривает текст как набор слов, игнорируя порядок, но учитывая частоту.

      – TF-IDF (частота термина – обратная частота документа): Подход, который учитывает частоту слов в конкретном документе относительно их распространенности в корпусе.

      Пример кода для векторизации с использованием библиотеки Scikit-learn:

      from sklearn.feature_extraction.text import TfidfVectorizer

      documents = ["Я люблю апельсины", "Я обожаю бананы"]

      vectorizer = TfidfVectorizer()

      X = vectorizer.fit_transform(documents)

      print(X.toarray())

      Векторизация текста является важным шагом для создания моделей машинного обучения, которые могут "понимать" и классифицировать текстовые документы.

      5. Модели и алгоритмы: Извлечение и анализ информации

      Заключительным шагом в обработке текста является использование различных моделей и алгоритмов для извлечения и анализа информации. Обычно это включает в себя машинное обучение, где применяются алгоритмы, такие как наивный байесовский классификатор, деревья решений и глубокие нейронные сети.

      Одним из популярных инструментов для работы с текстами является библиотека Hugging Face Transformers, которая предлагает предобученные модели, такие как BERT и GPT. Эти модели могут применяться для задач, включая анализ тональности, извлечение сущностей и текстовое обобщение.

      6. Примеры практического применения

      Каждый из описанных этапов включает в себя свои примеры практического применения:

      – Классификация блогов: Токенизация и фильтрация стоп-слов помогут создать систему, различающую классы текстов, например, позитивные и негативные.

      – Чат-боты: Векторизация текста и использование нейросетей позволяют чат-ботам интерпретировать запросы пользователей и выдавать ответы.

      – Анализ отзывов: Комбинация методов стемминга и лемматизации вместе с анализом тональности помогает в извлечении мнений из множества отзывов.

      Заключение

      Обработка текста – это основа для более сложных процессов взаимодействия с естественным языком. Каждый шаг в этой цепочке важен: от токенизации до применения моделей машинного обучения. Понимание этих компонентов не только даст возможность эффективно использовать системы обработки естественного языка, но и откроет новые горизонты для их применения в различных областях, таких как маркетинг, медицина и обучение.

      Нейронные сети и основы их работы

      Нейронные сети являются основополагающим элементом современных технологий обработки естественного языка. Они вдохновлены биологическими нейронными структурами и применяются для распознавания образов, классификации и генерации текстов. В этой главе мы рассмотрим принципы работы нейронных сетей, их архитектуру и примеры успешного применения в задачах обработки естественного языка.

      Принципы


Скачать книгу