Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса. Марио Ливио

Читать онлайн книгу.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио


Скачать книгу
воспринимали эту максиму сами пифагорейцы, можно судить по двум замечаниям Аристотеля. В компилятивном трактате «Метафизика» Аристотель пишет: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (здесь и далее пер. А. Кубицкого). В другом месте Аристотель живо описывает, как пифагорейцы почитали числа, и упоминает об особой роли тетрактиды: «Эврит [ученик пифагорейца Филолая] устанавливал, какое у какой вещи число (например, это вот – число человека, а это – число лошади); и так же как те, кто приводит числа к форме треугольника и четырехугольника (курсив мой. – М. Л.), он изображал при помощи камешков формы животных и растений». Выделенная фраза – «кто приводит числа к форме треугольника и четырехугольника» – отсылает и к тетрактиде, и к другому интереснейшему пифагорейскому понятию: к идее гномона.

      Слово «гномон» (в сущности, «маркер») происходит от названия вавилонского астрономического устройства для определения времени, похожего на солнечные часы[10]. Похоже, что этот аппарат привез в Грецию учитель Пифагора, естествоиспытатель Анаксимандр (ок. 611–547 гг. до н. э.). Не приходится сомневаться, что геометрические представления наставника и их применение в космологии – науке о Вселенной в целом – произвели на ученика сильное впечатление. Впоследствии слово «гномон» стало обозначать и чертежный угольник, и фигуру в виде двух полос, состыкованных под прямым углом, – если приложить ее к квадрату, получится квадрат большего размера (рис. 2). Обратите внимание, что если добавить, например, к квадрату 3 × 3 семь камешков, выложенных в форме прямого угла (гномона), получится квадрат 4 × 4, состоящий из 16 камешков. Это фигурное изображение следующего свойства: в последовательности нечетных целых чисел 1, 3, 5, 7, 9,… сумма любого количества последовательных членов (начиная с 1) всегда дает квадрат. Например, 1 = 12, 1 + 3= 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7 = 16 = 42, 1 + 3 + 5 + 7 + 9 = 25 = 52 и так далее. Такие тесные отношения между гномоном и квадратом, который он «обнимает», пифагорейцы считали символом познания в целом: знание «обнимает» познанное. Следовательно, по мнению пифагорейцев, числа не просто описывали физический мир, но и лежали в основе умственных и эмоциональных процессов.

      Рис. 2

      Квадраты целых чисел, которые ассоциируются с гномонами, вероятно, привели Пифагора и к формулировке его знаменитой теоремы. Это прославленное математическое утверждение гласит, что у любого прямоугольного треугольника площадь квадрата, достроенного на самой длинной стороне – гипотенузе, равна сумме площадей квадратов, достроенных на двух других сторонах – катетах (рис. 3). Карикатуристы под псевдонимом «Франк и Эрнест» посвятили истории открытия теоремы смешную картинку (рис. 4). Как видно на рис. 2, если добавить к квадрату 4 × 4 гномон 9 = 32, получится новый квадрат 5 × 5, то есть 32 + 42 = 52. Поэтому числа 3, 4, 5 могут быть длинами сторон прямоугольного


Скачать книгу

<p>10</p>

Подробно об истории и значении этого термина и о том, что означало это слово в разное время, см. Heath 1921. Математик Теон Смирнский (ок. 70–135 гг.) употреблял это слово применительно к фигурному выражению чисел, о чем говорится в его трактате «Изложение математических предметов, полезных при чтении Платона» (Theon of Smyrna ca. 130 AD).