Тайны чисел: Математическая одиссея. Маркус Сотой
Читать онлайн книгу.футбольный мяч, потому что у него слишком мало граней. Как мы увидим в главе 3, такая форма хотя и не подходила для футбольного поля, но была задействована в других играх Древнего мира.
Другой конфигурацией является куб, состоящий из шести квадратных граней. На первый взгляд эта форма кажется слишком стабильной для футбола, тем не менее эта структура послужила основой многим ранним футбольным мячам. Мяч для самого первого чемпионата мира 1930 г. состоял из 12 прямоугольных полосок кожи, сгруппированных в шесть пар и расположенных таким же образом, как при сборке куба. Один из таких мячей находится в экспозиции Национального музея футбола в Престоне, на севере Англии. Сейчас он ссохшийся и несимметричный. Другой весьма необычный футбольный мяч, также использовавшийся в 1930-х гг., опять-таки основывается на кубе и состоит из 6 хитро соединенных между собой кусков, каждый из которых имеет форму буквы Н.
Вы можете посетить веб-сайт «Тайн 4исел» и загрузить PDF-файлы с инструкциями по изготовлению пяти Платоновых футбольных мячей.
Но давайте вернемся к равносторонним треугольникам. Восемь из них могут быть расположены симметрично, составляя октаэдр. По существу, он представляет две соединенные между собой пирамиды с квадратными основаниями. После надлежащего объединения невозможно сказать, где был стык.
Чем больше граней, тем более круглыми становятся Платоновы футбольные мячи. Следующей после октаэдра формой является додекаэдр, состоящий из 12 пятиугольных граней. Это вызывает ассоциации с 12 месяцами года. Были найдены изготовленные в древности додекаэдры, на гранях которых вырезаны календари. Из всех Платоновых форм лучшим приближением к сферичному футбольному мячу служит икосаэдр, состоящий из 20 правильных треугольников.
Рис. 2.04. Платоновы тела ассоциировались со строительными кирпичиками природы
Платон полагал, что эти пять форм настолько фундаментальны, что связывал их с четырьмя стихиями, из которых строится весь мир: тетраэдр, обладающий самой заостренной формой, сопоставлялся с огнем, стабильный куб – с землей, октаэдр – с воздухом. Икосаэдр, имеющий самую округлую форму, олицетворял скользкую воду. Платон решил, что пятая форма, додекаэдр, представляла форму Вселенной.
Но как мы можем быть уверены, что Платон не упустил какую-то форму, шестой футбольный мяч? Другой греческий математик, Евклид, в кульминационной части одной из величайших когда-либо написанных математических книг доказал, что невозможно сшить вместе какую-то другую комбинацию, основанную на одной симметричной форме, чтобы получить шестой футбольный мяч и расширить список Платона.
Книга Евклида называется просто – «Начала»; возможно, она несет ответственность за становление аналитического искусства логического доказательства в математике. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира. Доказательство Евклида говорит нам, что в отношении