Самая главная молекула. От структуры ДНК к биомедицине XXI века. Максим Франк-Каменецкий
Читать онлайн книгу.дезоксинуклеозидмонофосфатами и обозначают как дНМФ. Кроме того, в ДНК вместо уридинового нуклеотида входит тимидиновый, у которого верхняя СН-группа в кольце заменена на группу СНН3
Копирование гена происходит по тому же правилу комплементарности, по которому идет репликация ДНК, только роль, которую играет в ДНК Т, в РНК играет У. Синтез РНК ведется по одной из двух комплементарных цепей гена. Фермент, ведущий синтез, т. е. осуществляющий процесс транскрипции, называется РНК-полимеразой.
Итак, РНК-полимераза снимает с участка длинной молекулы ДНК (с гена) копию в виде матричной РНК (мРНК). Этот РНКовый отпечаток гена используется на втором этапе синтеза белка, в процессе, получившем название трансляция. Собственно, этот этап является решающим, именно здесь вступает в силу генетический код.
Процесс трансляции очень сложен, в нем принимает участие множество действующих лиц. Главное из них – рибосома. Рибосома – это сложнейший агрегат, построенный из полусотни различных белков и молекулы РНК. Имеется в виду не та РНК, которая служит матрицей для синтеза белка на рибосоме, а другая, рибосомальная РНК (рРНК), которая является неотъемлемой частью рибосомы. Чтобы эти два класса РНК отличать друг от друга, рибосомальную РНК обозначают как рРНК, а матричную – мРНК. Рибосома – это молекулярный компьютер, переводящий тексты с нуклеотидного языка ДНК и РНК на аминокислотный язык белков. Этот узкоспециализированный компьютер работает только по одной программе, название которой – генетический код.
Генетический код
На рубеже 1950-х и 1960-х годов Фрэнсис Крик и его сотрудники выяснили основные свойства генетического кода. Было доказано, что код триплетный, т. е. одной аминокислоте соответствует последовательность из трех нуклеотидов на мРНК. Эта тройка нуклеотидов была названа кодоном. Текст, записанный в мРНК, считывается рибосомой последовательно, кодон за кодоном, начиная с некоторого начального инициирующего кодона по следующей схеме:
На этой схеме а0, а1… обозначают аминокислотные остатки белка. Напомним, что их может быть 20 типов. А сколько типов кодонов? Легко подсчитать, что всего существует 43 = 64 различных кодона. Так что же, не всякому кодону соответствует аминокислота? Да, не всякому.
Но таких бессмысленных, или незначащих, кодонов очень немного, и они выполняют специальную функцию – служат стоп-сигналами, обозначают конец белковой цепи. Поэтому их еще называют терминирующими кодонами. Подавляющее же большинство кодонов соответствует какому-либо аминокислотному остатку. А это значит, что код вырожден – большинству, если не всем, аминокислотным остаткам должно отвечать несколько кодонов.
К 1961 году стало ясно, что код триплетный, вырожденный и неперекрывающийся (т. е. считывание происходит кодон за кодоном) и что он содержит инициирующие и терминирующие кодоны. Дело было за тем, чтобы установить соответствие каждого аминокислотного остатка