Anticipations. Герберт Уэллс
Читать онлайн книгу.there remained nothing but the very obvious stage of getting the engine that had been developed on wheels and out upon the ways of the world.
Ever and again during the eighteenth century an engine would be put upon the roads and pronounced a failure – one monstrous Palæoferric creature was visible on a French high road as early as 1769 – but by the dawn of the nineteenth century the problem had very nearly got itself solved. By 1804 Trevithick had a steam locomotive indisputably in motion and almost financially possible, and from his hands it puffed its way, slowly at first, and then, under Stephenson, faster and faster, to a transitory empire over the earth. It was a steam locomotive – but for all that it was primarily a steam engine for pumping adapted to a new end; it was a steam engine whose ancestral stage had developed under conditions that were by no means exacting in the matter of weight. And from that fact followed a consequence that has hampered railway travel and transport very greatly, and that is tolerated nowadays only through a belief in its practical necessity. The steam locomotive was all too huge and heavy for the high road – it had to be put upon rails. And so clearly linked are steam engines and railways in our minds that, in common language now, the latter implies the former. But indeed it is the result of accidental impediments, of avoidable difficulties that we travel to-day on rails.
Railway travelling is at best a compromise. The quite conceivable ideal of locomotive convenience, so far as travellers are concerned, is surely a highly mobile conveyance capable of travelling easily and swiftly to any desired point, traversing, at a reasonably controlled pace, the ordinary roads and streets, and having access for higher rates of speed and long-distance travelling to specialized ways restricted to swift traffic, and possibly furnished with guide-rails. For the collection and delivery of all sorts of perishable goods also the same system is obviously altogether superior to the existing methods. Moreover, such a system would admit of that secular progress in engines and vehicles that the stereotyped conditions of the railway have almost completely arrested, because it would allow almost any new pattern to be put at once upon the ways without interference with the established traffic. Had such an ideal been kept in view from the first the traveller would now be able to get through his long-distance journeys at a pace of from seventy miles or more an hour without changing, and without any of the trouble, waiting, expense, and delay that arises between the household or hotel and the actual rail. It was an ideal that must have been at least possible to an intelligent person fifty years ago, and, had it been resolutely pursued, the world, instead of fumbling from compromise to compromise as it always has done and as it will do very probably for many centuries yet, might have been provided to-day, not only with an infinitely more practicable method of communication, but with one capable of a steady and continual evolution from year to year.
But there was a more obvious path of development and one immediately cheaper, and along that path went short-sighted Nineteenth Century Progress, quite heedless of the possibility of ending in a cul-de-sac. The first locomotives, apart from the heavy tradition of their ancestry, were, like all experimental machinery, needlessly clumsy and heavy, and their inventors, being men of insufficient faith, instead of working for lightness and smoothness of motion, took the easier course of placing them upon the tramways that were already in existence – chiefly for the transit of heavy goods over soft roads. And from that followed a very interesting and curious result.
These tram-lines very naturally had exactly the width of an ordinary cart, a width prescribed by the strength of one horse. Few people saw in the locomotive anything but a cheap substitute for horseflesh, or found anything incongruous in letting the dimensions of a horse determine the dimensions of an engine. It mattered nothing that from the first the passenger was ridiculously cramped, hampered, and crowded in the carriage. He had always been cramped in a coach, and it would have seemed "Utopian" – a very dreadful thing indeed to our grandparents – to propose travel without cramping. By mere inertia the horse-cart gauge, the 4 ft. 8½ in. gauge, nemine contradicente, established itself in the world, and now everywhere the train is dwarfed to a scale that limits alike its comfort, power, and speed. Before every engine, as it were, trots the ghost of a superseded horse, refuses most resolutely to trot faster than fifty miles an hour, and shies and threatens catastrophe at every point and curve. That fifty miles an hour, most authorities are agreed, is the limit of our speed for land travel, so far as existing conditions go.5 Only a revolutionary reconstruction of the railways or the development of some new competing method of land travel can carry us beyond that.
People of to-day take the railways for granted as they take sea and sky; they were born in a railway world, and they expect to die in one. But if only they will strip from their eyes the most blinding of all influences, acquiescence in the familiar, they will see clearly enough that this vast and elaborate railway system of ours, by which the whole world is linked together, is really only a vast system of trains of horse-waggons and coaches drawn along rails by pumping-engines upon wheels. Is that, in spite of its present vast extension, likely to remain the predominant method of land locomotion – even for so short a period as the next hundred years?
Now, so much capital is represented by the existing type of railways, and they have so firm an establishment in the acquiescence of men, that it is very doubtful if the railways will ever attempt any very fundamental change in the direction of greater speed or facility, unless they are first exposed to the pressure of our second alternative, competition, and we may very well go on to inquire how long will it be before that second alternative comes into operation – if ever it is to do so.
Let us consider what other possibilities seem to offer themselves. Let us revert to the ideal we have already laid down, and consider what hopes and obstacles to its attainment there seem to be. The abounding presence of numerous experimental motors to-day is so stimulating to the imagination, there are so many stimulated persons at work upon them, that it is difficult to believe the obvious impossibility of most of them – their convulsiveness, clumsiness, and, in many cases, exasperating trail of stench will not be rapidly fined away.6 I do not think that it is asking too much of the reader's faith in progress to assume that so far as a light powerful engine goes, comparatively noiseless, smooth-running, not obnoxious to sensitive nostrils, and altogether suitable for high road traffic, the problem will very speedily be solved. And upon that assumption, in what direction are these new motor vehicles likely to develop? how will they react upon the railways? and where finally will they take us?
At present they seem to promise developments upon three distinct and definite lines.
There will, first of all, be the motor truck for heavy traffic. Already such trucks are in evidence distributing goods and parcels of various sorts. And sooner or later, no doubt, the numerous advantages of such an arrangement will lead to the organization of large carrier companies, using such motor trucks to carry goods in bulk or parcels on the high roads. Such companies will be in an exceptionally favourable position to organize storage and repair for the motors of the general public on profitable terms, and possibly to co-operate in various ways with the manufactures of special types of motor machines.
In the next place, and parallel with the motor truck, there will develop the hired or privately owned motor carriage. This, for all except the longest journeys, will add a fine sense of personal independence to all the small conveniences of first-class railway travel. It will be capable of a day's journey of three hundred miles or more, long before the developments to be presently foreshadowed arrive. One will change nothing – unless it is the driver – from stage to stage. One will be free to dine where one chooses, hurry when one chooses, travel asleep or awake, stop and pick flowers, turn over in bed of a morning and tell the carriage to wait – unless, which is highly probable, one sleeps aboard.7…
And thirdly there will be the motor omnibus, attacking or developing out of the horse omnibus companies and the suburban lines. All this seems fairly safe prophesying.
And these things, which are quite obviously coming even now, will be working out their many structural problems when the next phase in their development begins. The motor omnibus companies competing against the suburban railways will find themselves hampered in the speed of their longer runs by the slower horse traffic on their routes, and they will attempt to secure, and, it may be, after tough legislative struggles,
5
It might be worse. If the biggest horses had been Shetland ponies, we should be travelling now in railway carriages to hold two each side at a maximum speed of perhaps twenty miles an hour. There is hardly any reason, beyond this tradition of the horse, why the railway carriage should not be even nine or ten feet wide, the width, that is, of the smallest room in which people can live in comfort, hung on such springs and wheels as would effectually destroy all vibration, and furnished with all the equipment of comfortable chambers.
6
Explosives as a motive power were first attempted by Huyghens and one or two others in the seventeenth century, and, just as with the turbine type of apparatus, it was probably the impetus given to the development of steam by the convenient collocation of coal and water and the need of an engine, that arrested the advance of this parallel inquiry until our own time. Explosive engines, in which gas and petroleum are employed, are now abundant, but for all that we can regard the explosive engine as still in its experimental stages. So far, research in explosives has been directed chiefly to the possibilities of higher and still higher explosives for use in war, the neglect of the mechanical application of this class of substance being largely due to the fact, that chemists are not as a rule engineers, nor engineers chemists. But an easily portable substance, the decomposition of which would evolve energy, or – what is, from the practical point of view, much the same thing – an easily portable substance, which could be decomposed electrically by wind or water power, and which would then recombine and supply force, either in intermittent thrusts at a piston, or as an electric current, would be infinitely more convenient for all locomotive purposes than the cumbersome bunkers and boilers required by steam. The presumption is altogether in favour of the possibility of such substances. Their advent will be the beginning of the end for steam traction on land and of the steam ship at sea: the end indeed of the Age of Coal and Steam. And even with regard to steam there may be a curious change of method before the end. It is beginning to appear that, after all, the piston and cylinder type of engine is, for locomotive purposes – on water at least, if not on land – by no means the most perfect. Another, and fundamentally different type, the turbine type, in which the impulse of the steam spins a wheel instead of shoving a piston, would appear to be altogether better than the adapted pumping engine, at any rate, for the purposes of steam navigation. Hero, of Alexandria, describes an elementary form of such an engine, and the early experimenters of the seventeenth century tried and abandoned the rotary principle. It was not adapted to pumping, and pumping was the only application that then offered sufficient immediate encouragement to persistence. The thing marked time for quite two centuries and a half, therefore, while the piston engines perfected themselves; and only in the eighties did the requirements of the dynamo-electric machine open a "practicable" way of advance. The motors of the dynamo-electric machine in the nineteenth century, in fact, played exactly the
7
The historian of the future, writing about the nineteenth century, will, I sometimes fancy, find a new meaning in a familiar phrase. It is the custom to call this the most "Democratic" age the world has ever seen, and most of us are beguiled by the etymological contrast, and the memory of certain legislative revolutions, to oppose one form of stupidity prevailing to another, and to fancy we mean the opposite to an "Aristocratic" period. But indeed we do not. So far as that political point goes, the Chinaman has always been infinitely more democratic than the European. But the world, by a series of gradations into error, has come to use "Democratic" as a substitute for "Wholesale," and as an opposite to "Individual," without realizing the shifted application at all. Thereby old "Aristocracy," the organization of society for the glory and preservation of the Select Dull, gets to a flavour even of freedom. When the historian of the future speaks of the past century as a Democratic century, he will have in mind, more than anything else, the unprecedented fact that we seemed to do everything in heaps – we read in epidemics; clothed ourselves, all over the world, in identical fashions; built and furnished our houses in stereo designs; and travelled – that naturally most individual proceeding – in bales. To make the railway train a perfect symbol of our times, it should be presented as uncomfortably full in the third class – a few passengers standing – and everybody reading the current number either of the