Апология математики (сборник статей). В. А. Успенский
Читать онлайн книгу.должно стать отнюдь не только уяснение гуманитарием того, что для данной точки не существует ближайшей к ней точки справа; несуществование такой точки – это, в конце концов, всего лишь математический факт. Не менее, а скорее даже более важным является уяснение математиком тех деталей психологии гуманитария, которая заставляет его считать, что такая точка существует.
Дело в том, что представление о 'ближайшем' формируется у гуманитария (как и у всякого человека) не на основе изучения такого сложного образования, как континуум точек на прямой, а на основе наблюдений материальных предметов окружающего мира. Наблюдение же, скажем, окон дома или кресел в театральном зале не оставляет сомнений в наличии ближайшего справа окна или кресла. (Предвидя ехидное возражение мелочного педанта, прибавим: если только исходное окно или кресло не является крайним.)
Из сказанного можно сделать такое заключение: наш пример с ближайшей точкой есть конкретное проявление некой общей трудности, имеющей философский характер. Трудность состоит в следующем. Математика изучает идеальные сущности (каковыми являются, в частности, точки), но обращается с ними, как если бы они были реальными предметами физического мира (например, применяет к точкам понятие 'ближайший'). Но в таком случае математик обязан отдавать себе отчёт в том, что подобный квазиматериальный подход к абстракциям, если не сделать специальных оговорок, влечёт за собой перенесение на эти абстракции шлейфа представлений, которые абстракциям не свойственны, а заимствуются из обращения с физическими предметами.
Что до упомянутых «специальных оговорок», они делаются явно, а подсознательно впитываются математиками в процессе их обучения. В случае точек на прямой указанный шлейф включает в себя представление о точках на прямой как о мельчайших бусинах, нанизанных на натянутую нить. Разумеется, в рамках такого представления естественно предполагать наличие ближайшей точки и даже быть уверенным в её наличии.
Порядок точек на прямой является в математической терминологии плотным порядком; термин «плотный» означает, что для любых двух участвующих в этом упорядочении объектов, каковыми в данном случае служат точки прямой, найдётся объект (в данном случае точка) между ними. В окружающем нас материальном мире плотных порядков не встречается.
Вот другой пример на ту же тему. Одной из математических абстракций является пустое множество. Само понятие 'множество', подобно понятию 'натуральное число', представляет собой одно из первичных, неопределяемых математических понятий, познаваемых из примеров. Синонимом математического термина «множество» является слово «совокупность»; объекты, входящие в какую-либо совокупность, она же множество, называются её (соответственно его) элементами.
Слово «множество» может навести на мысль, что в множестве должно быть много элементов, тем более что главное, общеупотребительное значение этого слова действительно выражает данную мысль, как, например, во фразе «Можно указать множество причин…». Эта ложная мысль разрушается уже заявлением, что «множество» (в математическом смысле) и «совокупность» суть синонимы: ведь количество