Как работает Вселенная: Введение в современную космологию. Сергей Парновский
Читать онлайн книгу.Почему приливы, вызванные небольшой Луной, сильнее, чем приливы, вызванные огромным Солнцем?
Ответ: Формулу для приливной силы можно найти в учебниках, она утверждает, что эта сила обратно пропорциональна кубу расстояния. Тем не менее, вместо того чтобы просто использовать эту формулу, покажем, как эта зависимость от расстояния может быть получена с помощью простой аналогии.
Рассмотрим два точечных тела единичной массы – одно в центре Земли, а другое на поверхности Земли. Приливная сила во второй точке может зависеть только от трех параметров: от расстояния между двумя точками, в которых находятся тела, от расстояния до Луны, а также от угла между направлением на Луну и линией, соединяющей эти точки. Эта приливная сила, равная разности сил, действующих на две точечные массы, равна также сумме сил, действующих на второе тело и на первое тело, если вторая взята с противоположным знаком.
Воспользуемся электростатической аналогией и заменим эти тела точечными единичными зарядами, а Луну – внешним точечным зарядом, величина которого выбирается таким образом, что силы, действующие на точечные заряды, идентичны гравитационным силам, действующим на точечные массы[20]. Обратим знак центрального заряда (именно поэтому нам понадобилось переключиться на электрическое поле, так как не существует такого понятия, как отрицательная масса). Теперь на заряд в центре Земли действует сила той же величины, но в противоположном направлении. Эти два противоположных заряда образуют диполь, причем его размеры существенно меньше расстояния до Луны.
Сила, с которой точечный заряд, которым мы заменили Луну, взаимодействует с нашим электрическим диполем, равна искомой приливной силе. Согласно третьему закону Ньютона, она равна также силе, с которой диполь действует на точечный заряд в центре Луны. Поле диполя убывает обратно пропорционально кубу расстояния, поэтому поле приливных сил должно убывать по тому же закону. Возвращаясь к гравитации, мы наконец-то получаем, что приливные силы падают обратно пропорционально кубу расстояния до тела, вызывающего приливы, и пропорциональны его массе.
Теперь сделаем некоторые простые расчеты. Солнце весит 2,0×1030 кг и расположено на расстоянии 1,5×108 км. Луна весит 7,3×1022 кг и находится на расстоянии 3,8×105 км. Таким образом, Солнце в 2,7×107 раз тяжелее и в 395 раз дальше, чем Луна. Если возвести отношение расстояний в куб, мы получаем 6,2×107, что в 2,2 раза больше, чем отношение масс. Таким образом, лунные приливы в 2,2 раза сильнее солнечных приливов.
Однако, если нас интересует отношение гравитационных сил, мы должны использовать отношение квадратов расстояний, которое в 176 раз меньше, чем отношение масс, и Солнце легко выигрывает это соревнование. Если мы интересуемся вкладом в гравитационный потенциал, обратно пропорциональный расстоянию, то вклад от галактик в скоплении Девы, расположенных на расстоянии около 54 млн световых лет (св. лет) от Земли, будет существенно большим, чем вклад как Солнца, так и Луны.
1.2.8.
20
Это возможно потому, что обе эти силы падают как квадрат расстояния.