Конец зигзага на пути познания? По материалам публикаций журнала Президиума Российской академии наук. С. В. Гальперин
Читать онлайн книгу.считая, что оно обладает непроницаемостью. Он же заложил основы аналитической геометрии в качестве метода объединения геометрии с алгеброй, открыв дорогу применению системы координат, названной его именем. Но это значит, что рассматриваемая в геометризованной СТО трёхмерность пространства целиком обусловливалась мировоззрением Декарта и оказывалась вне его условной и несостоятельной. Между тем всё, что так или иначе касалось проблем абсолютного и относительного пространства, имеющих отношение к основам СТО, было связано исключительно с мировоззрением Ньютона, а вовсе не Декарта.
А что же Ньютон, которому в год кончины Декарта исполнилось всего семь лет? Он, конечно же, в период своей учёбы в Кембридже знакомится с трудами Декарта, но в его мировосприятии мерность пространства не только не отождествляется с мерностью вещества, заполняющего его, но и сама по себе мерность оказывается результатом непрерывного движения. Это следует со всей очевидностью из его трактата «О квадратуре кривых», изданного, кстати, когда автору пошёл седьмой десяток (стало быть, сомневаться в устойчивости его взглядов на мир не приходится): «Линии описываются и по мере описания образуются не приложением частей, а непрерывным движением точек, поверхности – движением линий, объёмы – движением поверхностей, углы – вращением сторон, времена – непрерывным течением и т. д. Такое происхождение имеет место и на самом деле в природе вещей и наблюдается ежедневно при движении тел»11. Оставаясь на такой позиции, приходим к выводу, что участвующая в образовании линейной (одномерной) формы точка сама по себе пространственной мерности лишена. Казалось бы, её и представить в таком случае совершенно невозможно. Однако всё обстоит по-другому: классическое естествознание, которое твёрдо стоит на том, что пространство однородно (все точки в нём равнозначны) и изотропно (все направления в нём равноправны), предоставляет именно такую возможность. Рассуждения очень просты: во-первых, если все направления равноправны, то это равноправие должно проявляться и в одной-единственной точке; во-вторых, если все точки в пространстве равнозначны, то равноправие направлений должно проявляться в любой из точек. Отсюда общий вывод: однородное и изотропное пространство может быть представлено как бесконечное множество точек, каждая из которых является центром бесконечного множества направлений.
Но, возможно, это и есть то самое абсолютное пространство Ньютона, которое «по самой своей сущности, безотносительно к чему бы то ни было внешнему, остаётся всегда одинаковым и неподвижным»12, вокруг которого сломано столько копий?! Эйнштейну, которому в его поисках был далеко не чужд прагматизм, бесполезность такого понятия казалась вполне очевидной – этого было достаточно, чтобы считать абсолютное пространство несуществующим. Впрочем, он даже в 1953 г.