Вопрос жизни. Энергия, эволюция и происхождение сложности. Ник Лейн
Читать онлайн книгу.либо когда в системе увеличивается энтропия, либо когда система теряет тепло, либо то и другое вместе. Это значит, что локальная энтропия может снижаться до тех пор, пока ∆H это компенсирует (это означает выделение большого количества тепла в окружающее пространство). А главное вот что: чтобы обеспечивать рост и размножение, некоторые реакции должны непрерывно выделять тепло в окружающую среду, разупорядочивая ее. Вспомните о звездах. Они платят за свое упорядоченное существование, отдавая Вселенной огромную энергию. Мы и сами платим за свое непрерывное существование теплом, которое высвобождается в результате непрерывно протекающей реакции дыхания. Мы постоянно окисляем пищу кислородом, нагревая окружающее пространство. Потеря тепла – не побочный эффект, а совершенно необходимый для поддержания жизни процесс. Чем больше потеря тепла, тем выше доступный уровень сложности[20].
Все процессы в живой клетке самопроизвольны. Они запустятся, если дать им правильную стартовую точку. Их ∆G всегда отрицательна. В отношении энергии это похоже на катание с горы. Но это означает, что стартовая точка должна находиться очень высоко. Чтобы получился белок, должно произойти событие с низкой вероятностью: в одном месте должно скопиться достаточное количество активированных аминокислот. Тогда они начнут объединяться в цепи, формируя белок с определенной укладкой. Выделение энергии при этом процессе будет повышать энтропию окружающей среды. Даже активированные аминокислоты будут образовываться самопроизвольно, если есть достаточное количество подходящих реакционноспособных предшественников. И эти предшественники также образуются самопроизвольно, если находятся в среде с высокой реакционной способностью. Таким образом, энергия для роста появляется из высокоэнергетичных компонентов среды, которые непрерывно поступают в живые клетки (в нашем случае в форме пищи и кислорода, в случае растений – в виде света). Живые клетки используют этот непрерывный поток энергии, чтобы, сопротивляясь распаду, расти. Они делают это при помощи хитроумных структур, частично программируемых генами. Но какими бы ни были эти структуры, они сами – результат роста и размножения, естественного отбора и эволюции, и ни один из этих процессов невозможен в отсутствие непрерывного притока энергии извне.
Организмам требуется неимоверно много энергии, чтобы жить. Энергетическая “валюта”, которая в ходу у клеток, называется аденозинтрифосфат (АТФ). АТФ работает как монета, которую кидают в игровой автомат. Она заставляет автомат сработать один раз, после чего он выключается. В случае АТФ роль такой машины, как правило, играет белок. АТФ обеспечивает переход из одной стабильной конформации в другую – как бы щелкает переключателем. Чтобы вернуть белок в исходное состояние, требуется снова затратить АТФ – как и в ситуации с автоматом: чтобы его запустить, придется скормить еще одну монетку. Представьте
20
Это интересный момент с точки зрения эволюции теплокровности (эндотермности). Существует, хотя и не всегда, прямая связь между ростом теплоотдачи и увеличением сложности. Высокая сложность должна быть оплачена увеличением потери тепла. Таким образом, эндотермные организмы в теории (даже если этого не наблюдается) способны приобрести большую сложность, нежели экзотермные (холоднокровные). Возможно, сложный мозг некоторых птиц и млекопитающих – как раз тот случай.