Как работает мозг. Стивен Пинкер
Читать онлайн книгу.сомнения, вот пример из повседневной жизни. Когда телевизор выключен, экран имеет бледный зеленовато-серый оттенок. Когда телевизор включают, некоторые люминофорные точки начинают светиться, образуя светлые участки изображения, а некоторые другие точки не светятся, образуя темные участки; они остаются серыми. Те части изображения, которые мы видим как черные, на самом деле – все тот же бледно-серый оттенок кинескопа выключенного телевизора. Черный цвет – это фикция, результат работы мозга по той же схеме, благодаря которой мы видим, что уголь – это уголь. Именно эту схему работы использовали создатели телевидения, когда разрабатывали телеэкран.
Следующая проблема зрительного восприятия – это глубина. Наши глаза разбивают трехмерный мир на два двухмерных изображения на сетчатке глаз, а третье измерение должен воссоздать мозг. Однако в изображении на сетчатке нет никаких подсказок относительно того, насколько далеко от смотрящего расположен объект. Почтовая марка на вашей ладони оставит на сетчатке такое же квадратное изображение, как стул, стоящий у противоположной стены, или здание, расположенное за много километров от вас (первый рисунок на с. 17). Разделочная доска, если на нее смотреть фронтально, может давать такую же трапециевидную проекцию, как и фигуры неправильной формы, расположенные под углом (второй рисунок на с. 17).
Ближе вы можете познакомиться с этим явлением из области геометрии и с нейронным механизмом, который с ним работает, если посмотрите в течение нескольких секунд на электрическую лампочку или на фотоаппарат в момент вспышки: в результате на вашей сетчатке останется световое пятно. Теперь переведите взгляд на страницу книги; у вас перед глазами по-прежнему будет остаточное изображение лампочки шириной 3–5 см. Если вы посмотрите на стену, то остаточное изображение будет около метра в длину. А если посмотрите на небо, то это изображение будет размером с облако4
Наконец, как заставить модуль зрительного восприятия распознавать предметы, чтобы робот мог назвать их или вспомнить их назначение? Очевидным решением было бы построить для каждого объекта маску или шаблон, в точности повторяющий его форму. В таком случае при появлении объекта в поле зрения его проекция на сетчатке идеально совпадала бы с шаблоном. Шаблону присваивается метка с именем данной формы – в нашем случае это метка «Р», – и каждый раз, когда проекция совпадает с шаблоном, система выдает ее имя5:
Увы, это простое устройство допускает ошибки в обоих возможных случаях. С одной стороны, оно видит букву Р там, где ее нет: например, реагирует на букву R (первый вариант слева на рисунке внизу). С другой стороны, оно не замечает букву Р там, где она есть: например, если она смещена, наклонена, неровно написана, расположена слишком далеко или слишком близко, либо написана слишком затейливым шрифтом:
Столько проблем с распознаванием одной простой и