Man's Place in the Universe. Alfred Russel Wallace
Читать онлайн книгу.spread over the sky, far away from it in the southern hemisphere, and in the north clustering in a very marked degree around the galactic pole. The distribution of nebulæ is thus seen to be the exact opposite to that of the star-clusters, while both are so distinctly related to the position of the Milky Way—the ground-plane of the sidereal system, as Sir John Herschel termed it—that we are compelled to include them all as connected portions of one grand and, to some extent, symmetrical universe, whose remarkable and opposite mode of distribution over the heavens may probably afford a clue to the mode of development of that universe and to the changes that are even now taking place within it. The maps referred to above are of such great importance, and are so essential to a clear comprehension of the nature and constitution of the vast sidereal system which surrounds us, that I have, with the permission of the Royal Astronomical Society, reproduced them here. (See end of volume.)
A careful examination of them will give a clearer idea of the very remarkable facts of distribution of star-clusters and nebulæ than can be afforded by any amount of description or of numerical statements.
The forms of many of the nebulæ are very curious. Some are quite irregular, as the Orion nebula, the Keyhole nebula in the southern hemisphere, and many others. Some show a decidedly spiral form, as those in Andromeda and Canes Venatici; others again are annular or ring-shaped, as those in Lyra and Cygnus, while a considerable number are termed planetary nebulæ, from their exhibiting a faint circular disc like that of a planet. Many have stars or groups of stars evidently forming parts of them, and this is especially the case with those of the largest size. But all these are comparatively few in number and more or less exceptional in type, the great majority being minute cloudy specks only visible with good telescopes, and so faint as to leave much doubt as to their exact shape and nature. Sir John Herschel catalogued 5000 in 1864, and more than 8000 were discovered up to 1890; while the application of the camera has so increased the numbers that it is thought there may really be many hundreds of thousands of them.
The spectroscope shows the larger irregular nebulæ to be gaseous, as are the annular and planetary nebulæ as well as many very brilliant white stars; and all these objects are most frequent in or near the Milky Way. Their spectra show a green line not produced by any terrestrial element. With the great Lick telescope several of the planetary nebulæ have been found to be irregular and sometimes to be formed of compressed or looped rings and other curious forms.
Many of the smaller nebulæ are double or triple, but whether they really form revolving systems is not yet known. The great mass of the small nebulæ that occupy large tracts of the heavens remote from the Galaxy are often termed irresolvable nebulæ, because the highest powers of the largest telescopes show no indication of their being star-clusters, while they are too faint to give any definite indications of structure in the spectroscope. But many of them resemble comets in their forms, and it is thought not impossible that they may be not very dissimilar in constitution.
We have now passed in review the main features presented to us in the heavens outside the solar system, so far as regards the numbers and distribution of the lucid stars (those visible to the naked eye) as well as those brought to view by the telescope; the form and chief characteristics of the Milky Way or Galaxy; and lastly, the numbers and distribution of those interesting objects—star-clusters and nebulæ in their special relations to the Milky Way. This examination has brought clearly before us the unity of the whole visible universe; that everything we can see, or obtain any knowledge of, with all the resources of modern gigantic telescopes, of the photographic plate, and of the even more marvellous spectroscope, forms parts of one vast system which may be shortly and appropriately termed the Stellar universe.
In our next chapter we shall carry the investigation a step further, by sketching in outline what is known of the motions and distances of the stars, and thus obtain some important information bearing upon our special subject of inquiry.
CHAPTER V
In early ages, before any approximate idea was reached of the great distances of the stars from us, the simple conception of a crystal sphere to which these luminous points were attached and carried round every day on an axis near which our pole-star is situated, satisfied the demands for an explanation of the phenomena. But when Copernicus set forth the true arrangement of the heavenly bodies, earth and planets alike revolving round the sun at distances of many millions of miles, and when this scheme was enforced by the laws of Kepler and the telescopic discoveries of Galileo, a difficulty arose which astronomers were unable satisfactorily to overcome. If, said they, the earth revolves round the sun at a distance which cannot be less (according to Kepler's measurement of the distance of Mars at opposition) than 131/2 millions of miles, then how is it that the nearer stars are not seen to shift their apparent places when viewed from opposite sides of this enormous orbit? Copernicus, and after him Kepler and Galileo, stoutly maintained that it was because the stars were at such an enormous distance from us that the earth's orbit was a mere point in comparison. But this seemed wholly incredible, even to the great observer Tycho Brahé, and hence the Copernican theory was not so generally accepted as it otherwise would have been.
Galileo always declared that the measurement would some day be made, and he even suggested the method of effecting it which is now found to be the most trustworthy. But the sun's distance had to be first measured with greater accuracy, and that was only done in the latter part of the eighteenth century by means of transits of Venus; and by later observations with more perfect instruments it is now pretty well fixed at about 92,780,000 miles, the limits of error being such that 923/4 millions may perhaps be quite as accurate.
With such an enormous base-line as twice this distance, which is available by making observations at intervals of about six months when the earth is at opposite points in its orbit, it seemed certain that some parallax or displacement of the nearer stars could be found, and many astronomers with the best instruments devoted themselves to the work. But the difficulties were enormous, and very few really satisfactory results were obtained till the latter half of the nineteenth century. About forty stars have now been measured with tolerable certainty, though of course with a considerable margin of possible or probable error; and about thirty more, which are found to have a parallax of one-tenth of a second or less, must be considered to leave a very large margin of uncertainty.
The two nearest fixed stars are Alpha Centauri and 61 Cygni. The former is one of the brightest stars in the southern hemisphere, and is about 275,000 times as far from us as the sun. The light from this star will take 41/4 years to reach us, and this 'light-journey,' as it is termed, is generally used by astronomers as an easily remembered mode of recording the distances of the fixed stars, the distance in miles—in this case about 25 millions of millions—being very cumbrous. The other star, 61 Cygni, is only of about the fifth magnitude, yet it is the second nearest to us, with a light-journey of about 71/4 years. If we had no other determinations of distance than these two, the facts would be of the highest importance. They teach us, first, that magnitude or brightness of a star is no proof of nearness to us, a fact of which there is much other evidence; and in the second place, they furnish us with a probable minimum distance of independent suns from one another, which, in proportion to their sizes, some being known to be many times larger than our sun, is not more than we might expect. This remoteness may be partly due to those which were once nearer together having coalesced under the influence of gravitation.
As this measurement of the distance of the nearer stars should be clearly understood by every one who wishes to obtain some real comprehension of the scale of this vast universe of which we form a part, the method now adopted and found to be most effectual will be briefly explained.
Everyone who is acquainted with the rudiments of trigonometry or mensuration, knows that an inaccessible distance can be accurately determined if we can measure a base-line from both ends of which the inaccessible object can be seen, and if we have a good instrument with which to measure angles. The accuracy will mainly depend upon our base-line being not excessively short in comparison with the distance to be measured. If it is as much as half or even a quarter as long the measurement may be as accurate as if directly performed over the ground, but if it is only one-hundredth or one-thousandth part as long, a very small error either in the length of the base or