Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид Самптер

Читать онлайн книгу.

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер


Скачать книгу
в себя треугольники. Смотрите рисунок ниже.

      Ответ. Решение для пяти и шести точек.

      Давайте сделаем проблему соединения пригородов действительно сложной. Попробуем решить эту проблему, если мы не знаем расположения пригородов или даже сколько их необходимо подключить. С такой проблемой постоянно сталкивается слизевик под названием Physarum polycephalum. Слизевики не имеют мозга и состоят всего из одной клетки. Их «тело» представляет собой сеть взаимосвязанных трубок, которые качают питательные вещества назад и вперед. Слизевиков можно обнаружить на лесной подстилке или деревьях. Обычно они покрывают площадь меньше монеты, однако они могут сжиматься в неблагоприятных условиях и разрастаться, если еды вдоволь.

      Когда слизевики ищут еду, они решают проблему соединения пригородов. Вдохновленный этой идеей, мой японский коллега Тоси Накагаки решил проверить, смогут ли слизевики создать сеть метрополитена и скоростного трамвая Токио. Он и его коллеги разложили питание слизевиков в виде масштабной модели Большого Токио. Они положили овсяные хлопья в чашки Петри: одна большая посередине как отображение центра города и поменьше в местах, соответствующих Сибуе, Иокогаме, аэропорту в Тибе и другим близлежащим районам. Чтобы добиться соединения чашек с овсом, слизевики должны решить ту же проблему, которую разрешили японские градостроители при проектировании транспортной системы Токио. Могут ли слизевики формировать эффективные связи между своими продовольственными ресурсами?

      Эксперименты прошли отлично[14]. Создать сеть треугольников, соединяющих овсяные хлопья, не составило им труда. Тоси сравнил решение слизевиков с реальной транспортной сетью в Токио и обнаружил, что, хотя они и не были идентичными, у них была схожая структура. Решение слизевиков было так же эффективно, как и специалистов по городскому планированию; помимо этого, они использовали близкое к реальному число связей для объединения овсяных хлопьев. Сравнение решений слизевиков и людей показано на рисунке 2.3.

      Рисунок 2.3. Сравнение сети, построенной слизевиками для объединения овсяных хлопьев (круги), расположенных в соответствии с пригородами Токио (слева), и реальной железнодорожной сети (справа). Воспроизводится с разрешения Американской ассоциации содействия развитию науки.

      Соединения треугольников – главная особенность трубчатых сетей слизевиков. Некоторые овсяные хлопья становятся узлами, которые соединяются с другими точками, так что общая длина трубок остается небольшой.

      Обратите внимание: углы в этих узловых пунктах велики, как и в футбольных схемах, и сеть распространяется равномерно во всех направлениях. Слизевики не строят наименьшую возможную сеть для объединения овсяных хлопьев: они создали несколько петель, обеспечив различные способы перемещения между одними и теми же точками. Тоси и его коллеги объяснили, что эти петли очень полезны, если структура повреждена или разрушена. Если одно звено в сети разорвано,


Скачать книгу

<p>14</p>

Tero, A. Rules for biologically inspired adaptive network design. – Science 327(5964), 2010. – p. 439–442.