«Мыслящий тростник». Жизнь и творчество Паскаля в восприятии русских философов и писателей. Борис Тарасов
Читать онлайн книгу.Блеза в очередной раз резко ухудшается, начинаются невыносимые зубные боли, совсем отнимающие сон и не дающие ни минуты телесного покоя. Однажды поздно вечером, когда герцог де Роаннец покидает своего больного друга и отправляется домой, Паскалю становится совсем плохо. Пытаясь как-то приглушить страдания, он вдруг вспоминает некогда затруднившую Мерсенна задачу о циклоиде, или рулетте, и принимается решать ее.
«Рулетта, – писал Паскаль, – является линией столь обычной, что после прямой и окружности нет более часто встречающейся линии; она так часто вычерчивается перед глазами каждого, что приходится удивляться тому, как не рассмотрели ее древние… ибо это не что иное, как путь, описываемый в воздухе гвоздем колеса, когда оно катится своим привычным движением, с того момента, как гвоздь начал подниматься от земли, до того, как непрерывное качение колеса не приводит его опять к земле после окончания целого оборота, считая, что колесо – идеальный круг, гвоздь – точка его окружности, а земля – идеально плоская».
Действительно, «столь обычная» и «часто встречающаяся линия» стала широко замечаться и фигурировать в науке и технике лишь с XVII века. В настоящее же время циклоидальные кривые по своему практическому значению и использованию стоят рядом с такими популярными кривыми, как эллипс, парабола или баллистическая траектория, и их можно обнаружить в форме профилей зубьев шестерен, в очертаниях эксцентриков, кулачков и других деталей машин. «Путь, описываемый в воздухе гвоздем колеса», постепенно замечался не только учеными; например, в одном из эпизодов «Путешествий Гулливера» Свифта «на второе был подан пирог в форме циклоиды…». Хотя еще в середине XV века теолог и математик Николай Кузанский, наблюдая за движущимся экипажем, стал размышлять над особенностями этого пути, лишь в конце XVI столетия впервые основательно изучил данную кривую Галилей, который и назвал ее циклоидой (название происходит от греческого слова kykloeides – кругообразный). Галилей пытался вычислить площадь циклоиды и сравнить ее с площадью «порождающего круга». Для этого он изготовил соответствующие металлические поверхности и взвесил их: оказалось, что площадь циклоиды приблизительно в три раза больше площади круга. Сам основатель современного естествознания о своих исследованиях циклоиды ничего не писал, и о них известно лишь из упоминаний его последователей и учеников – Вивиани, Торричелли и других.
В начале XVII века над «путем, описываемым в воздухе гвоздем колеса», стал задумываться в монастырском уединении и Мерсенн. Во Франции эту кривую назвали рулеттой (от французского глагола rouler – «катиться»). Когда он сообщил о своих наблюдениях Робервалю, тот занялся тщательным исследованием кривой: по методу неделимых он определил центр тяжести и квадратуру рулетты, кубатуру тел ее вращения и решил ряд других вопросов. Мерсенн в 1638 году писал Декарту по этому поводу:
«Что касается господина Роберваля, он нашел множество новых результатов как геометрических, так и механических… Он нашел, что площадь