Great Astronomers. Ball Robert Stawell
Читать онлайн книгу.duties, his life was occupied partly in ministering medically to the wants of the poor, and partly with his researches in astronomy and mathematics. His equipment in the matter of instruments for the study of the heavens seems to have been of a very meagre description. He arranged apertures in the walls of his house at Allenstein, so that he could observe in some fashion the passage of the stars across the meridian. That he possessed some talent for practical mechanics is proved by his construction of a contrivance for raising water from a stream, for the use of the inhabitants of Frauenburg. Relics of this machine are still to be seen.
COPERNICUS.
The intellectual slumber of the Middle Ages was destined to be awakened by the revolutionary doctrines of Copernicus. It may be noted, as an interesting circumstance, that the time at which he discovered the scheme of the solar system has coincided with a remarkable epoch in the world's history. The great astronomer had just reached manhood at the time when Columbus discovered the new world.
Before the publication of the researches of Copernicus, the orthodox scientific creed averred that the earth was stationary, and that the apparent movements of the heavenly bodies were indeed real movements. Ptolemy had laid down this doctrine 1,400 years before. In his theory this huge error was associated with so much important truth, and the whole presented such a coherent scheme for the explanation of the heavenly movements, that the Ptolemaic theory was not seriously questioned until the great work of Copernicus appeared. No doubt others, before Copernicus, had from time to time in some vague fashion surmised, with more or less plausibility, that the sun, and not the earth, was the centre about which the system really revolved. It is, however, one thing to state a scientific fact; it is quite another thing to be in possession of the train of reasoning, founded on observation or experiment, by which that fact may be established. Pythagoras, it appears, had indeed told his disciples that it was the sun, and not the earth, which was the centre of movement, but it does not seem at all certain that Pythagoras had any grounds which science could recognise for the belief which is attributed to him. So far as information is available to us, it would seem that Pythagoras associated his scheme of things celestial with a number of preposterous notions in natural philosophy. He may certainly have made a correct statement as to which was the most important body in the solar system, but he certainly did not provide any rational demonstration of the fact. Copernicus, by a strict train of reasoning, convinced those who would listen to him that the sun was the centre of the system. It is useful for us to consider the arguments which he urged, and by which he effected that intellectual revolution which is always connected with his name.
The first of the great discoveries which Copernicus made relates to the rotation of the earth on its axis. That general diurnal movement, by which the stars and all other celestial bodies appear to be carried completely round the heavens once every twenty-four hours, had been accounted for by Ptolemy on the supposition that the apparent movements were the real movements. As we have already seen, Ptolemy himself felt the extraordinary difficulty involved in the supposition that so stupendous a fabric as the celestial sphere should spin in the way supposed. Such movements required that many of the stars should travel with almost inconceivable velocity. Copernicus also saw that the daily rising and setting of the heavenly bodies could be accounted for either by the supposition that the celestial sphere moved round and that the earth remained at rest, or by the supposition that the celestial sphere was at rest while the earth turned round in the opposite direction. He weighed the arguments on both sides as Ptolemy had done, and, as the result of his deliberations, Copernicus came to an opposite conclusion from Ptolemy. To Copernicus it appeared that the difficulties attending the supposition that the celestial sphere revolved, were vastly greater than those which appeared so weighty to Ptolemy as to force him to deny the earth's rotation.
Copernicus shows clearly how the observed phenomena could be accounted for just as completely by a rotation of the earth as by a rotation of the heavens. He alludes to the fact that, to those on board a vessel which is moving through smooth water, the vessel itself appears to be at rest, while the objects on shore seem to be moving past. If, therefore, the earth were rotating uniformly, we dwellers upon the earth, oblivious of our own movement, would wrongly attribute to the stars the displacement which was actually the consequence of our own motion.
Copernicus saw the futility of the arguments by which Ptolemy had endeavoured to demonstrate that a revolution of the earth was impossible. It was plain to him that there was nothing whatever to warrant refusal to believe in the rotation of the earth. In his clear-sightedness on this matter we have specially to admire the sagacity of Copernicus as a natural philosopher. It had been urged that, if the earth moved round, its motion would not be imparted to the air, and that therefore the earth would be uninhabitable by the terrific winds which would be the result of our being carried through the air. Copernicus convinced himself that this deduction was preposterous. He proved that the air must accompany the earth, just as his coat remains round him, notwithstanding the fact that he is walking down the street. In this way he was able to show that all a priori objections to the earth's movements were absurd, and therefore he was able to compare together the plausibilities of the two rival schemes for explaining the diurnal movement.
FRAUENBURG, FROM AN OLD PRINT.
Once the issue had been placed in this form, the result could not be long in doubt. Here is the question: Which is it more likely—that the earth, like a grain of sand at the centre of a mighty globe, should turn round once in twenty-four hours, or that the whole of that vast globe should complete a rotation in the opposite direction in the same time? Obviously, the former is far the more simple supposition. But the case is really much stronger than this. Ptolemy had supposed that all the stars were attached to the surface of a sphere. He had no ground whatever for this supposition, except that otherwise it would have been well-nigh impossible to have devised a scheme by which the rotation of the heavens around a fixed earth could have been arranged. Copernicus, however, with the just instinct of a philosopher, considered that the celestial sphere, however convenient from a geometrical point of view, as a means of representing apparent phenomena, could not actually have a material existence. In the first place, the existence of a material celestial sphere would require that all the myriad stars should be at exactly the same distances from the earth. Of course, no one will say that this or any other arbitrary disposition of the stars is actually impossible, but as there was no conceivable physical reason why the distances of all the stars from the earth should be identical, it seemed in the very highest degree improbable that the stars should be so placed.
Doubtless, also, Copernicus felt a considerable difficulty as to the nature of the materials from which Ptolemy's wonderful sphere was to be constructed. Nor could a philosopher of his penetration have failed to observe that, unless that sphere were infinitely large, there must have been space outside it, a consideration which would open up other difficult questions. Whether infinite or not, it was obvious that the celestial sphere must have a diameter at least many thousands of times as great as that of the earth. From these considerations Copernicus deduced the important fact that the stars and the other celestial bodies must all be vast objects. He was thus enabled to put the question in such a form that it could hardly receive any answer but the correct one. Which is it more rational to suppose, that the earth should turn round on its axis once in twenty-four hours, or that thousands of mighty stars should circle round the earth in the same time, many of them having to describe circles many thousands of times greater in circumference than the circuit of the earth at the equator? The obvious answer pressed upon Copernicus with so much force that he was compelled to reject Ptolemy's theory of the stationary earth, and to attribute the diurnal rotation of the heavens to the revolution of the earth on its axis.
Once this tremendous step had been taken, the great difficulties which beset the monstrous conception of the celestial sphere vanished, for the stars need no longer be regarded as situated at equal distances from the earth. Copernicus saw that they might lie at the most varied degrees of remoteness, some being hundreds or thousands of times farther away than others. The complicated structure of the celestial sphere as a material object disappeared altogether; it remained only as a geometrical conception, whereon we find it convenient to indicate the places of the stars. Once the Copernican doctrine had been fully