Falling in Love; With Other Essays on More Exact Branches of Science. Allen Grant

Читать онлайн книгу.

Falling in Love; With Other Essays on More Exact Branches of Science - Allen Grant


Скачать книгу
distance, it must have been very thin indeed, thinner than our clumsy human senses can even conceive of. An American would say, too thin; but I put Americans out of court at once as mere irreverent scoffers. From the orbit of Neptune, or something outside it, the faint and cloud-like mass which bore within it Cæsar and his fortunes, not to mention the remainder of the earth and the solar system, began slowly to converge and gather itself in, growing denser and denser but smaller and smaller as it gradually neared its existing dimensions. How long a time it took to do it is for our present purpose relatively unimportant: the cruel physicists will only let us have a beggarly hundred million years or so for the process, while the grasping and extravagant evolutionary geologists beg with tears for at least double or even ten times that limited period. But at any rate it has taken a good long while, and, as far as most of us are personally concerned, the difference of one or two hundred millions, if it comes to that, is not really at all an appreciable one.

      As it condensed and lessened towards its central core, revolving rapidly on its great axis, the solar mist left behind at irregular intervals concentric rings or belts of cloud-like matter, cast off from its equator; which belts, once more undergoing a similar evolution on their own account, have hardened round their private centres of gravity into Jupiter or Saturn, the Earth or Venus. Round these again, minor belts or rings have sometimes formed, as in Saturn's girdle of petty satellites; or subsidiary planets, thrown out into space, have circled round their own primaries, as the moon does around this sublunary world of ours. Meanwhile, the main central mass of all, retreating ever inward as it dropped behind it these occasional little reminders of its temporary stoppages, formed at last the sun itself, the main luminary of our entire system. Now, I won't deny that this primitive Kantian and Laplacian evolutionism, this nebular theory of such exquisite concinnity, here reduced to its simplest terms and most elementary dimensions, has received many hard knocks from later astronomers, and has been a good deal bowled over, both on mathematical and astronomical grounds, by recent investigators of nebulæ and meteors. Observations on comets and on the sun's surface have lately shown that it contains in all likelihood a very considerable fanciful admixture. It isn't more than half true; and even the half now totters in places. Still, as a vehicle of popular exposition the crude nebular hypothesis in its rawest form serves a great deal better than the truth, so far as yet known, on the good old Greek principle of the half being often more than the whole. The great point which it impresses on the mind is the cardinal idea of the sun and planets, with their attendant satellites, not as turned out like manufactured articles, ready made, at measured intervals, in a vast and deliberate celestial Orrery, but as due to the slow and gradual working of natural laws, in accordance with which each has assumed by force of circumstances its existing place, weight, orbit, and motion.

      The grand conception of a gradual becoming, instead of a sudden making, which Kant and Laplace thus applied to the component bodies of the universe at large, was further applied by Lyell and his school to the outer crust of this one particular petty planet of ours. While the astronomers went in for the evolution of suns, stars, and worlds, Lyell and his geological brethren went in for the evolution of the earth's surface. As theirs was stellar, so his was mundane. If the world began by being a red-hot mass of planetary matter in a high state of internal excitement, boiling and dancing with the heat of its emotions, it gradually cooled down with age and experience, for growing old is growing cold, as every one of us in time, alas, discovers. As it passed from its fiery and volcanic youth to its staider and soberer middle age, a solid crust began to form in filmy fashion upon its cooling surface. The aqueous vapour that had floated at first as steam around its heated mass condensed with time into a wide ocean over the now hardened shell. Gradually this ocean shifted its bulk into two or three main bodies that sank into hollows of the viscid crust, the precursors of Atlantic, Pacific, and the Indian Seas. Wrinklings of the crust, produced by the cooling and consequent contraction, gave rise at first to baby mountain ranges, and afterwards to the earliest rough draughts of the still very vague and sketchy continents. The world grew daily more complex and more diverse; it progressed, in accordance with the Spencerian law, from the homogeneous to the heterogeneous, and so forth, as aforesaid, with delightful regularity.

      At last, by long and graduated changes, seas and lands, peninsulas and islands, lakes and rivers, hills and mountains, were wrought out by internal or external energies on the crust thus generally fashioned. Evaporation from the oceans gave rise to clouds and rain and hailstorms; the water that fell upon the mountain tops cut out the valleys and river basins; rills gathered into brooks, brooks into streams, streams into primæval Niles, and Amazons, and Mississippis. Volcanic forces uplifted here an Alpine chain, or depressed there a deep-sea hollow. Sediment washed from the hills and plains, or formed from countless skeletons of marine creatures, gathered on the sinking bed of the ocean as soft ooze, or crumbling sand, or thick mud, or gravel and conglomerate. Now upheaved into an elevated table-land, now slowly carved again by rain and rill into valley and watershed, and now worn down once more into the mere degraded stump of a plateau, the crust underwent innumerable changes, but almost all of them exactly the same in kind, and mostly in degree, as those we still see at work imperceptibly in the world around us. Rain washing down the soil; weather crumbling the solid rock; waves dashing at the foot of the cliffs; rivers forming deltas at their barred mouths; shingle gathering on the low spits; floods sweeping before them the countryside; ice grinding ceaselessly at the mountain top; peat filling up the shallow lake—these are the chief factors which have gone to make the physical world as we now actually know it. Land and sea, coast and contour, hill and valley, dale and gorge, earth-sculpture generally—all are due to the ceaseless interaction of these separately small and unnoticeable causes, aided or retarded by the slow effects of elevation or depression from the earth's shrinkage towards its own centre. Geology, in short, has shown us that the world is what it is, not by virtue of a single sudden creative act, nor by virtue of successive terrible and recurrent cataclysms, but by virtue of the slow continuous action of causes still always equally operative.

      Evolution in geology leads up naturally to evolution in the science of life. If the world itself grew, why not also the animals and plants that inhabit it? Already in the eager active eighteenth century this obvious idea had struck in the germ a large number of zoologists and botanists, and in the hands of Lamarck and Erasmus Darwin it took form as a distinct and elaborate system of organic evolution. Buffon had been the first to hint at the truth; but Buffon was an eminently respectable nobleman in the dubious days of the tottering monarchy, and he did not care personally for the Bastille, viewed as a place of permanent residence. In Louis Quinze's France, indeed, as things then went, a man who offended the orthodoxy of the Sorbonne was prone to find himself shortly ensconced in free quarters, and kept there for the term of his natural existence without expense to his heirs or executors. So Buffon did not venture to say outright that he thought all animals and plants were descended one from the other with slight modifications; that would have been wicked, and the Sorbonne would have proved its wickedness to him in a most conclusive fashion by promptly getting him imprisoned or silenced. It is so easy to confute your opponent when you are a hundred strong and he is one weak unit. Buffon merely said, therefore, that if we didn't know the contrary to be the case by sure warrant, we might easily have concluded (so fallible is our reason) that animals always varied slightly, and that such variations, indefinitely accumulated, would suffice to account for almost any amount of ultimate difference. A donkey might thus have grown into a horse, and a bird might have developed from a primitive lizard. Only we know it was quite otherwise! A quiet hint from Buffon was as good as a declaration from many less knowing or suggestive people. All over Europe, the wise took Buffon's hint for what he meant it; and the unwise blandly passed it by as a mere passing little foolish vagary of that great ironical writer and thinker.

      Erasmus Darwin, the grandfather of his grandson, was no fool; on the contrary, he was the most far-sighted man of his day in England; he saw at once what Buffon was driving at; and he worked out 'Mr. Buffon's' half-concealed hint to all its natural and legitimate conclusions. The great Count was always plain Mr. Buffon to his English contemporary. Life, said Erasmus Darwin nearly a century since, began in very minute marine forms, which gradually acquired fresh powers and larger bodies, so as imperceptibly to transform themselves into different creatures. Man, he remarked, anticipating his descendant, takes rabbits or pigeons, and alters them almost to his own fancy, by immensely changing their shapes and colours. If man can make a pouter or a fantail out of the common runt, if he can produce a piebald


Скачать книгу