Six Lectures on Light. Delivered In The United States In 1872-1873. John Tyndall
Читать онлайн книгу.of the Rainbow
Snell's law of refraction is one of the corner-stones of optical science, and its applications to-day are million-fold. Immediately after its discovery Descartes applied it to the explanation of the rainbow. A beam of solar light falling obliquely upon a rain-drop is refracted on entering the drop. It is in part reflected at the back of the drop, and on emerging it is again refracted. By these two refractions, and this single reflection, the light is sent to the eye of an observer facing the drop, and with his back to the sun.
Conceive a line drawn from the sun, through the back of his head, to the observer's eye and prolonged beyond it. Conceive a second line drawn from the shower to the eye, and enclosing an angle of 42½° with the line drawn from the sun. Along this second line a rain-drop when struck by a sunbeam will send red light to the eye. Every other drop similarly situated, that is, every drop at an angular distance of 42½° from the line through the sun and eye, will do the same. A circular band of red light is thus formed, which may be regarded as the boundary of the base of a cone, with its apex at the observer's eye. Because of the magnitude of the sun, the angular width of this red band will be half a degree.
From the eye of the observer conceive another line to be drawn, enclosing an angle, not of 42½°, but of 40½°, with the prolongation of the line drawn from the sun. Along this other line a rain-drop, at its remote end, when struck by a solar beam, will send violet light to the eye. All drops at the same angular distance will do the same, and we shall therefore obtain a band of violet light of the same width as the red band. These two bands constitute the limiting colours of the rainbow, and between them the bands corresponding to the other colours lie.
Thus the line drawn from the eye to the middle of the bow, and the line drawn through the eye to the sun, always enclose an angle of about 41°. To account for this was the great difficulty, which remained unsolved up to the time of Descartes.
Taking a pen in hand, and calculating by means of Snell's law the track of every ray through a raindrop, Descartes found that, at one particular angle, the rays, reflected at its back, emerged from the drop almost parallel to each other. They were thus enabled to preserve their intensity through long atmospheric distances. At all other angles the rays quitted the drop divergent, and through this divergence became so enfeebled as to be practically lost to the eye. The angle of parallelism here referred to was that of forty-one degrees, which observation had proved to be invariably associated with the rainbow.
From what has been said, it is clear that two observers standing beside each other, or one above the other, nay, that even the two eyes of the same observer, do not see exactly the same bow. The position of the base of the cone changes with that of its apex. And here we have no difficulty in answering a question often asked—namely, whether a rainbow is ever seen reflected in water. Seeing two bows, the one in the heavens, the other in the water, you might be disposed to infer that the one bears the same relation to the other that a tree upon the water's edge bears to its reflected image. The rays, however, which reach an observer's eye after reflection from the water, and which form a bow in the water, would, were their course from the shower uninterrupted, converge to a point vertically under the observer, and as far below the level of the water as his eye is above it. But under no circumstances could an eye above the water-level and one below it see the same bow—in other words, the self-same drops of rain cannot form the reflected bow and the bow seen directly in the heavens. The reflected bow, therefore, is not, in the usual optical sense of the term, the image of the bow seen in the sky.
§ 7. Analysis and Synthesis of Light. Doctrine of Colours
In the rainbow a new phenomenon was introduced—the phenomenon of colour. And here we arrive at one of those points in the history of science, when great men's labours so intermingle that it is difficult to assign to each worker his precise meed of honour. Descartes was at the threshold of the discovery of the composition of solar light; but for Newton was reserved the enunciation of the true law. He went to work in this way: Through the closed window-shutter of a room he pierced an orifice, and allowed a thin sunbeam to pass through it. The beam stamped a round white image of the sun on the opposite wall of the room. In the path of this beam Newton placed a prism, expecting to see the beam refracted, but also expecting to see the image of the sun, after refraction, still round. To his astonishment, it was drawn out to an image with a length five times its breadth. It was, moreover, no longer white, but divided into bands of different colours. Newton saw immediately that solar light was composite, not simple. His elongated image revealed to him the fact that some constituents of the light were more deflected by the prism than others, and he concluded, therefore, that white light was a mixture of lights of different colours, possessing different degrees of refrangibility.
Let us reproduce this celebrated experiment. On the screen is now stamped a luminous disk, which may stand for Newton's image of the sun. Causing the beam (from the aperture L, fig. 7) which produces the disk to pass through a lens (E), we form a sharp image of the aperture. Placing in the track of the beam a prism (P), we obtain Newton's coloured image, with its red and violet ends, which he called a spectrum. Newton divided the spectrum into seven parts—red, orange, yellow, green, blue, indigo, violet; which are commonly called the seven primary or prismatic colours. The drawing out of the white light into its constituent colours is called dispersion.
Fig. 7.
This was the first analysis of solar light by Newton; but the scientific mind is fond of verification, and never neglects it where it is possible. Newton completed his proof by synthesis in this way: The spectrum now before you is produced by a glass prism. Causing the decomposed beam to pass through a second similar prism, but so placed that the colours are refracted back and reblended, the perfectly white luminous disk is restored.
Fig. 8.
In this case, refraction and dispersion are simultaneously abolished. Are they always so? Can we have the one without the other? It was Newton's conclusion that we could not. Here he erred, and his error, which he maintained to the end of his life, retarded the progress of optical discovery. Dollond subsequently proved that by combining two different kinds of glass, the colours can be extinguished, still leaving a residue of refraction, and he employed this residue in the construction of achromatic lenses—lenses yielding no colour—which Newton thought an impossibility. By setting a water-prism—water contained in a wedge-shaped vessel with glass sides (B, fig. 8)—in opposition to a wedge of glass (to the right of B), this point can be illustrated before you. We have first of all the position (dotted) of the unrefracted beam marked upon the screen; then we produce the narrow water-spectrum (W); finally, by introducing a flint-glass prism, we refract the beam back, until the colour disappears (at A). The image of the slit is now white; but though the dispersion is abolished, there remains a very sensible amount of refraction.
This is the place to illustrate another point bearing upon the instrumental means employed in these lectures. Bodies differ widely from each other as to their powers of refraction and dispersion. Note the position of the water-spectrum upon the screen. Altering in no particular the wedge-shaped vessel, but simply substituting for the water the transparent bisulphide of carbon, you notice how much higher the beam is thrown, and how much richer is the display of colour. To augment the size of our spectrum we here employ (at L) a slit, instead of a circular aperture.6
Fig. 9.
The synthesis of white light may be effected in three ways, all of which are worthy of attention: Here, in the first instance, we have a rich spectrum produced by the decomposition of the beam (from L, fig. 9). One face of the prism (P) is protected by a diaphragm (not shown in the figure), with a longitudinal slit, through which the beam passes into the prism. It emerges decomposed at the other side. I permit the colours to pass through a cylindrical lens (C), which so squeezes them together as to produce upon the screen a sharply defined rectangular image of the longitudinal slit. In that image the colours are reblended, and it is perfectly white. Between the prism and the cylindrical lens
6
The low dispersive power of water masks, as Helmholtz has remarked, the imperfect achromatism of the eye. With the naked eye I can see a distant blue disk sharply defined, but not a red one. I can also see the lines which mark the upper and lower boundaries of a horizontally refracted spectrum sharp at the blue end, but ill-defined at the red end. Projecting a luminous disk upon a screen, and covering one semicircle of the aperture with a red and the other with a blue or green glass, the difference between the apparent sizes of the two semicircles is in my case, and in numerous other cases, extraordinary. Many persons, however, see the apparent sizes of the two semicircles reversed. If with a spectacle glass I correct the dispersion of the red light over the retina, then the blue ceases to give a sharply defined image. Thus examined, the departure of the eye from achromatism appears very gross indeed.