The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method. Henri Poincare
Читать онлайн книгу.would be at fault; no sort of sense could be attributed to it, and it would be necessary to fall back on Kirchhoff's.
Why then take this détour? You admit a certain definition of force which has a meaning only in certain particular cases. In these cases you verify by experiment that it leads to the law of acceleration. On the strength of this experiment, you then take the law of acceleration as a definition of force in all the other cases.
Would it not be simpler to consider the law of acceleration as a definition in all cases, and to regard the experiments in question, not as verifications of this law, but as verifications of the principle of reaction, or as demonstrating that the deformations of an elastic body depend only on the forces to which this body is subjected?
And this is without taking into account that the conditions under which your definition could be accepted are never fulfilled except imperfectly, that a thread is never without mass, that it is never removed from every force except the reaction of the bodies attached to its extremities.
Andrade's ideas are nevertheless very interesting; if they do not satisfy our logical craving, they make us understand better the historic genesis of the fundamental ideas of mechanics. The reflections they suggest show us how the human mind has raised itself from a naïve anthropomorphism to the present conceptions of science.
We see at the start a very particular and in sum rather crude experiment; at the finish, a law perfectly general, perfectly precise, the certainty of which we regard as absolute. This certainty we ourselves have bestowed upon it voluntarily, so to speak, by looking upon it as a convention.
Are the law of acceleration, the rule of the composition of forces then only arbitrary conventions? Conventions, yes; arbitrary, no; they would be if we lost sight of the experiments which led the creators of the science to adopt them, and which, imperfect as they may be, suffice to justify them. It is well that from time to time our attention is carried back to the experimental origin of these conventions.
CHAPTER VII
Relative Motion and Absolute Motion
The Principle of Relative Motion.—The attempt has sometimes been made to attach the law of acceleration to a more general principle. The motion of any system must obey the same laws, whether it be referred to fixed axes, or to movable axes carried along in a rectilinear and uniform motion. This is the principle of relative motion, which forces itself upon us for two reasons: first, the commonest experience confirms it, and second, the contrary hypothesis is singularly repugnant to the mind.
Assume it then, and consider a body subjected to a force; the relative motion of this body, in reference to an observer moving with a uniform velocity equal to the initial velocity of the body, must be identical to what its absolute motion would be if it started from rest. We conclude hence that its acceleration can not depend upon its absolute velocity; the attempt has even been made to derive from this a demonstration of the law of acceleration.
There long were traces of this demonstration in the regulations for the degree B. ès Sc. It is evident that this attempt is idle. The obstacle which prevented our demonstrating the law of acceleration is that we had no definition of force; this obstacle subsists in its entirety, since the principle invoked has not furnished us the definition we lacked.
The principle of relative motion is none the less highly interesting and deserves study for its own sake. Let us first try to enunciate it in a precise manner.
We have said above that the accelerations of the different bodies forming part of an isolated system depend only on their relative velocities and positions, and not on their absolute velocities and positions, provided the movable axes to which the relative motion is referred move uniformly in a straight line. Or, if we prefer, their accelerations depend only on the differences of their velocities and the differences of their coordinates, and not on the absolute values of these velocities and coordinates.
If this principle is true for relative accelerations, or rather for differences of acceleration, in combining it with the law of reaction we shall thence deduce that it is still true of absolute accelerations.
It then remains to be seen how we may demonstrate that the differences of the accelerations depend only on the differences of the velocities and of the coordinates, or, to speak in mathematical language, that these differences of coordinates satisfy differential equations of the second order.
Can this demonstration be deduced from experiments or from a priori considerations?
Recalling what we have said above, the reader can answer for himself.
Thus enunciated, in fact, the principle of relative motion singularly resembles what I called above the generalized principle of inertia; it is not altogether the same thing, since it is a question of the differences of coordinates and not of the coordinates themselves. The new principle teaches us therefore something more than the old, but the same discussion is applicable and would lead to the same conclusions; it is unnecessary to return to it.
Newton's Argument.—Here we encounter a very important and even somewhat disconcerting question. I have said the principle of relative motion was for us not solely a result of experiment and that a priori every contrary hypothesis would be repugnant to the mind.
But then, why is the principle true only if the motion of the movable axes is rectilinear and uniform? It seems that it ought to impose itself upon us with the same force, if this motion is varied, or at any rate if it reduces to a uniform rotation. Now, in these two cases, the principle is not true. I will not dwell long on the case where the motion of the axes is rectilinear without being uniform; the paradox does not bear a moment's examination. If I am on board, and if the train, striking any obstacle, stops suddenly, I shall be thrown against the seat in front of me, although I have not been directly subjected to any force. There is nothing mysterious in that; if I have undergone the action of no external force, the train itself has experienced an external impact. There can be nothing paradoxical in the relative motion of two bodies being disturbed when the motion of one or the other is modified by an external cause.
I will pause longer on the case of relative motions referred to axes which rotate uniformly. If the heavens were always covered with clouds, if we had no means of observing the stars, we nevertheless might conclude that the earth turns round; we could learn this from its flattening or again by the Foucault pendulum experiment.
And yet, in this case, would it have any meaning, to say the earth turns round? If there is no absolute space, can one turn without turning in reference to something else? and, on the other hand, how could we admit Newton's conclusion and believe in absolute space?
But it does not suffice to ascertain that all possible solutions are equally repugnant to us; we must analyze, in each case, the reasons for our repugnance, so as to make our choice intelligently. The long discussion which follows will therefore be excused.
Let us resume our fiction: thick clouds hide the stars from men, who can not observe them and are ignorant even of their existence; how shall these men know the earth turns round?
Even more than our ancestors, no doubt, they will regard the ground which bears them as fixed and immovable; they will await much longer the advent of a Copernicus. But in the end the Copernicus would come—how?
The students of mechanics in this world would not at first be confronted with an absolute contradiction. In the theory of relative motion, besides real forces, two fictitious forces are met which are called ordinary and compound centrifugal force. Our imaginary scientists could therefore explain everything by regarding these two forces as real, and they would not see therein any contradiction of the generalized principle of inertia, for these forces would depend, the one on the relative positions of the various parts of