Основы теории искусственных нейронных сетей. Александр Аполлонович Кириченко

Читать онлайн книгу.

Основы теории искусственных нейронных сетей - Александр Аполлонович Кириченко


Скачать книгу
состояние нейрона меняется со временем. Если подача на входы импульсов отсутствует, то значение текущего потенциала стремится к нулю.

      Принимать сигналы (импульсы) нейрон может с помощью входов. Каждый вход нейрона характеризуется весовым коэффициентом W (вес входа). Импульсы, поступая на вход нейрона, изменяют его текущее состояние. Эффект от импульса определяется типом входа, на который он поступил, весом этого входа а также текущим состоянием нейрона. На рисунке 12 представлена визуальная модель бионического нейрона и показаны его входы и выходы:1 – вход возбуждения, 2 – вход регуляции, 3 – вход памяти, 4 – вход запрета, 5 – вход торможения, 6 – выход (синапс) нейрона.

      Рис. Модель бионического нейрона

      Особенным образом работает вход памяти. Аналогично возбуждению он увеличивает потенциал, но приращение потенциала теперь зависит не только от веса входа, но также от текущего состояния коэффициента обученности. Коэффициент обученности в отличие от веса меняет своё значение динамически в процессе работы нейронной сети. Он может принимать значения в диапазоне от 0 до 1.

      Если µ = 0, то вход считается необученным – в этом случае импульсация на этот вход не оказывает никакого влияния на состояние нейрона. Максимально обученный вход (µ = 1) работает аналогично входу возбуждения с весом W, пока значение µ снова не изменится (уменьшится).

      Обучение, переобучение, разобучение – механизмы, регулирующие значение µ и, как следствие, работу входов памяти нейрона.

      Разобучение – уменьшение µ, происходит в тех случаях, когда сигнал, поступивший на вход памяти, не был подкреплён последующим сигналом на вход возбуждения, или не сопровождался регулирующей импульсацией (при этом T ≥T0). В этой ситуации значение µ уменьшится на ∆µ-.

      Таким образом, вход памяти отличается от входа возбуждения умением менять значимость своего вклада в общий потенциал в зависимости от характера импульсации.

      В результате обзора существующих моделей становится видно, что существует достаточное количество нейронов, описывающих естественный нейрон очень упрощенно. Они нашли свое применение в области распознавания образов, для решения задач классификации и т. д. Также существует множество моделей, которые при описании нейрона ставят своей целью количественное описание поведения нейрона. Однако до сих пор остается непонятным, приводит ли усложнение нейрона, попытки отображения им все новых свойств естественного нейрона, к существенному прогрессу и улучшению результатов решаемых нейронами задач.

      Нейронные ансамбли

      В нервной системе, особенно в ее периферических отделах, существуют устойчивые, генетически предопределенные конфигурации нервных клеток – нейронные ансамбли или ганглии, функции которых обычно ограничены и предопределены спецификой периферического отдела в организме.

      В практике нейронного моделирования в ряде случаев также оказывается полезным рассматривать ограниченную совокупность


Скачать книгу