Искусственный интеллект – надежды и опасения. Сборник

Читать онлайн книгу.

Искусственный интеллект – надежды и опасения - Сборник


Скачать книгу
связях стало известно намного больше, чем за всю предшествующую историю вопроса».

      Размышляя об успехах машинного обучения и пытаясь экстраполировать их на будущее ИИ, я спрашиваю себя: «Известны ли нам базовые ограничения, которые были обнаружены в области причинно-следственных связей? Готовы ли мы преодолеть теоретические препятствия, мешающие нам переходить с одного уровня иерархии на другой?»

      Я рассматриваю машинное обучение как инструмент, позволяющий перейти от данных к вероятностям. Но тогда следует сделать два дополнительных шага, чтобы перейти от вероятностей к реальному пониманию, – два больших шага. Один заключается в том, чтобы предсказывать последствия действий, а второй состоит в освоении контрфактуального воображения. Мы не вправе утверждать, что постигли реальность, если не сделаем эти два шага.

      В своей блестящей и проницательной работе «Предвидение и понимание» (1961) философ Стивен Тулмин определил противостояние прозрачности и непрозрачности как ключевое условие осознания сути древнего соперничества между греческими и вавилонскими науками. Согласно Тулмину, вавилонские астрономы были мастерами предсказаний по «черному ящику» и сильно превосходили своих греческих соперников по точности и последовательности небесных наблюдений. Тем не менее наука предпочла креативно-умозрительную стратегию греческих астрономов, которая изобиловала метафорическими образами: круглые трубы, полные огня; малые отверстия, сквозь которые сияет небесный огонь (звезды); полусферическая Земля на спине гигантской черепахи… Именно эта безумная стратегия моделирования, а вовсе не вавилонские экстраполяции, побудила Эратосфена (276–194 годы до н. э.) предпринять один из наиболее творческих экспериментов Античности и вычислить окружность Земли. Подобный эксперимент был попросту невозможен среди вавилонских собирателей данных.

      Модельная слепота накладывает внутренние ограничения на когнитивные задачи, которые способен выполнять «сильный» ИИ. Мой общий вывод состоит в том, что сопоставимый с человеческим ИИ нельзя создать только на основе машины с модельной слепотой; он требует симбиотического сотрудничества данных и моделей.

      Наука о данных является наукой лишь в той мере, в какой она облегчает интерпретацию данных, – перед нами задача двух тел, связь данных и реальности. Данные сами по себе вряд ли окажутся наукой, какими бы «большими» они ни были и насколько бы искусно ими ни манипулировали. Непрозрачные обучаемые системы могут привести нас в Вавилон, но не в Афины.

      Глава 3

      Цель, заложенная в машину

      Стюарт Рассел

      профессор компьютерных наук и профессор-стипендиат по машиностроению в Калифорнийском университете (Беркли). Он автор (вместе с Питером Норвигом) книги «Искусственный интеллект: современный подход».

      Ученый-компьютерщик Стюарт Рассел, наряду с Илоном Маском, Стивеном


Скачать книгу