Tractatus Logico-Philosophicus (Chiron Academic Press - The Original Authoritative Edition). Ludwig Wittgenstein
Читать онлайн книгу.fx we should have arrived at the proposition “fx is true for all values of x” which is represented by “(x).fx.” Wittgenstein’s method of dealing with general propositions [i.e. “(x) . fx” and “(∃x) . fx”] differs from previous methods by the fact that the generality comes only in specifying the set of propositions concerned, and when this has been done the building up of truth-functions proceeds exactly as it would in the case of a finite number of enumerated arguments p, q, r ....
Mr Wittgenstein’s explanation of his symbolism at this point is not quite fully given in the text. The symbol he uses is (p, ξ, N(ξ)). The following is the explanation of this symbol:
p stands for all atomic propositions.
ξ stands for any set of propositions.
N(ξ) stands for the negation of all the propositions making up ξ.
The whole symbol (p, ξ, N(ξ)) means whatever can be obtained by taking any selection of atomic propositions, negating them all, then taking any selection of the set of propositions now obtained, together with any of the originals—and so on indefinitely. This is, he says, the general truth-function and also the general form of proposition. What is meant is somewhat less complicated than it sounds. The symbol is intended to describe a process by the help of which, given the atomic propositions, all others can be manufactured. The process depends upon:
(a) Sheffer’s proof that all truth-functions can be obtained out of simultaneous negation, i.e. out of “not-p and not-q”;
(b) Mr Wittgenstein’s theory of the derivation of general propositions from conjunctions and disjunctions;
(c) The assertion that a proposition can only occur in another proposition as argument to a truth-function. Given these three foundations, it follows that all propositions which are not atomic can be derived from such as are, by a uniform process, and it is this process which is indicated by Mr Wittgenstein’s symbol.
From this uniform method of construction we arrive at an amazing simplification of the theory of inference, as well as a definition of the sort of propositions that belong to logic. The method of generation which has just been described, enables Wittgenstein to say that all propositions can be constructed in the above manner from atomic propositions, and in this way the totality of propositions is defined. (The apparent exceptions which we mentioned above are dealt with in a manner which we shall consider later.) Wittgenstein is enabled to assert that propositions are all that follows from the totality of atomic propositions (together with the fact that it is the totality of them); that a proposition is always a truth-function of atomic propositions; and that if p follows from q the meaning of p is contained in the meaning of q, from which of course it results that nothing can be deduced from an atomic proposition. All the propositions of logic, he maintains, are tautologies, such, for example, as “p or not p.”
The fact that nothing can be deduced from an atomic proposition has interesting applications, for example, to causality. There cannot, in Wittgenstein’s logic, be any such thing as a causal nexus. “The events of the future,” he says, “cannot be inferred from those of the present. Superstition is the belief in the causal nexus.” That the sun will rise to-morrow is a hypothesis. We do not in fact know whether it will rise, since there is no compulsion according to which one thing must happen because another happens.
Let us now take up another subject—that of names. In Wittgenstein’s theoretical logical language, names are only given to simples. We do not give two names to one thing, or one name to two things. There is no way whatever, according to him, by which we can describe the totality of things that can be named, in other words, the totality of what there is in the world. In order to be able to do this we should have to know of some property which must belong to every thing by a logical necessity. It has been sought to find such a property in self-identity, but the conception of identity is subjected by Wittgenstein to a destructive criticism from which there seems no escape. The definition of identity by means of the identity of indiscernibles is rejected, because the identity of indiscernibles appears to be not a logically necessary principle. According to this principle x is identical with y if every property of x is a property of y, but it would, after all, be logically possible for two things to have exactly the same properties. If this does not in fact happen that is an accidental characteristic of the world, not a logically necessary characteristic, and accidental characteristics of the world must, of course, not be admitted into the structure of logic. Mr Wittgenstein accordingly banishes identity and adopts the convention that different letters are to mean different things. In practice, identity is needed as between a name and a description or between two descriptions. It is needed for such propositions as “Socrates is the philosopher who drank the hemlock,” or “The even prime is the next number after 1.” For such uses of identity it is easy to provide on Wittgenstein’s system.
The rejection of identity removes one method of speaking of the totality of things, and it will be found that any other method that may be suggested is equally fallacious: so, at least, Wittgenstein contends and, I think, rightly. This amounts to saying that “object” is a pseudo-concept. To say “x is an object” is to say nothing. It follows from this that we cannot make such statements as “there are more than three objects in the world,” or “there are an infinite number of objects in the world.” Objects can only be mentioned in connexion with some definite property. We can say “there are more than three objects which are human,” or “there are more than three objects which are red,” for in these statements the word object can be replaced by a variable in the language of logic, the variable being one which satisfies in the first case the function “x is human”; in the second the function “x is red.” But when we attempt to say “there are more than three objects,” this substitution of the variable for the word “object” becomes impossible, and the proposition is therefore seen to be meaningless.
We here touch one instance of Wittgenstein’s fundamental thesis, that it is impossible to say anything about the world as a whole, and that whatever can be said has to be about bounded portions of the world. This view may have been originally suggested by notation, and if so, that is much in its favour, for a good notation has a subtlety and suggestive-ness which at times make it seem almost like a live teacher. Notational irregularities are often the first sign of philosophical errors, and a perfect notation would be a substitute for thought. But although notation may have first suggested to Mr Wittgenstein the limitation of logic to things within the world as opposed to the world as a whole, yet the view, once suggested, is seen to have much else to recommend it. Whether it is ultimately true I do not, for my part, profess to know. In this Introduction I am concerned to expound it, not to pronounce upon it. According to this view we could only say things about the world as a whole if we could get outside the world, if, that is to say, it ceased to be for us the whole world. Our world may be bounded for some superior being who can survey it from above, but for us, however finite it may be, it cannot have a boundary, since it has nothing outside it. Wittgenstein uses, as an analogy, the field of vision. Our field of vision does not, for us, have a visual boundary, just because there is nothing outside it, and in like manner our logical world has no logical boundary because our logic knows of nothing outside it. These considerations lead him to a somewhat curious discussion of Solipsism. Logic, he says, fills the world. The boundaries of the world are also its boundaries. In logic, therefore, we cannot say, there is this and this in the world, but not that, for to say so would apparently presuppose that we exclude certain possibilities, and this cannot be the case, since it would require that logic should go beyond the boundaries of the world as if it could contemplate these boundaries from the other side also. What we cannot think we cannot think, therefore we also cannot say what we cannot think.
This, he says, gives the key to Solipsism. What Solipsism intends is quite correct, but this cannot be said, it can only be shown. That the world is my world appears in the fact that the boundaries of language (the only language I understand) indicate the boundaries of my world. The metaphysical subject does not belong to the world but is a boundary of the world.
We