Искусственный интеллект и Машинное обучение. Основы программирования на Python. Тимур Казанцев

Читать онлайн книгу.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - Тимур Казанцев


Скачать книгу
может быть не видна очевидно для человека.

      В отличие от обучения с учителем, модели, которые используются в обучении без учителя, выводят закономерности и выводы на основе немаркированных данных (или unlabeled data). Помните, у нас был пример с цветками ириса. Так вот в данных, которые мы давали компьютеру, присутствовали ответы какой вид ириса мы имеем в зависимости от тех или иных размеров лепестка и чашелистника. А в немаркированных данных, у нас имеются данные и признаки, но мы не имеем ответа к какому виду или классу они относятся. Поэтому такие данные называются немаркированные.

      В обучении без учителя основными типами задач являются Кластеризация и снижение размерности. Если в двух словах, то снижение размерности означает, что мы удаляем ненужные или излишние признаки из наших данных, чтобы облегчить классификацию наших данных и сделать ее более понятной для интерпретации.

      Давайте рассмотрим пример кластеризации.

      В задачах кластеризации у нас имеется набор объектов и нам надо выявить его внутреннюю структуру. То есть нам надо найти группы объектов внутри этого набора, которые наиболее похожи между собой, и отличаются от других групп объектов из этого же набора. Например, разобрать все движущиеся средства по категориям, например, все средства, похожие на велосипед, в одну группу или кластер, а похожие на автобус – в отдельную группу. Причем, мы не говорим компьютеру, что чем является, он должен самостоятельно найти схожие признаки и определить похожие объекты в ту или иную группу. Поэтому это и называется обучение без учителя, потому что мы не говорим изначально компьютеру к какой группе принадлежат те или иные объекты.

      Такие задачи бывают очень полезны для крупных ритейлеров, если они, например, хотят понять из кого состоят их клиенты. Предположим, есть крупный гипермаркет, и чтобы делать точечные рекламные акции для своих потребителей, ему необходимо будет разбить их по группам или кластерам. И если сейчас акция на спортивные товары, то отправлять информацию об этой акции не всем подряд потребителям, а только тем, кто в прошлом уже покупали спортивные товары.

      Таким образом, основная разница между обучением с учителем и обучением без учителя, это то, что в обучении с учителем мы используем маркированные данные, где каждый объект помечен и относится к тому или иному классу или имеет конкретное числовое значение. И на основе этих помеченных данных наша модель строит алгоритм, который помогает нам прогнозировать результаты при новых данных. А в обучении без учителя, имеющиеся у нас данные непромаркированы, и компьютер самостоятельно выводит определенные закономерности и общие признаки и разделяет все объекты на разные группы, схожие внутри одной группы и отличающиеся от объектов в других группах.

      Основные задачи обучения с учителем разделяются на два типа: Классификация, когда мы разделяем наши данные на классы, и Регрессия, когда мы делаем численный прогноз на основе предыдущих данных.

      Основные задачи обучения


Скачать книгу