Secondary Metabolites of Medicinal Plants. Bharat Singh

Читать онлайн книгу.

Secondary Metabolites of Medicinal Plants - Bharat Singh


Скачать книгу
alt="Illustration of tautomeric structures of eudesmol, Carvacrol, and Stigmasterol."/> Illustration of tautomeric structures of Ageraborniol, Terpinen-4-ol, β-Caryophyllene, and Spathulenol. Illustration of tautomeric structures of Jhanidiol, Germacrene D, Eupatoriochromene, and Encecalol. Illustration of tautomeric structures of Neryl isobutyrate, Hardwickiic acid, and Cadinene. Illustration of tautomeric structures of trans-Caryophyllene, α-Cedrol, and Biphenylene. Illustration of tautomeric structures of Guaiol, Torreyol, and Isoledene. Illustration of tautomeric structures of Camphene, α-Bisabolol, and γ-Curcumene. Illustration of tautomeric structures of Sakuranetin and Methoxyaromadendrine. Illustration of tautomeric structure of glucosylsakuranetin. Illustration of tautomeric structures of Labd-7-en-15-oic acid and Methyl-labd-7-en-15-oate. Illustration of tautomeric structures of Hydroxylabdan-15-oic acid and Bornyl acetate.Illustration of tautomeric structures of Methyl-hydroxylabdan-15-oate and Epifriedelinol.Illustration of tautomeric structures of Labda-7,13-dien-15-oic and Methyl-labd-8-en-15-oate. Illustration of tautomeric structures of Methyl-labd-8-en-15-oate and Citral. Illustration of tautomeric structure of hydroxy-kauran-19-oic acid. Illustration of tautomeric structure of tetramethylnaphthalen-2(1H)-one. Illustration of tautomeric structure of taraxasteryl palmitate. Illustration of tautomeric structures of Octacosanoic acid and Caffeic acid. Illustration of tautomeric structures of Quercetagenin-7-β-O-glucoside and Ferulic acid. Illustration of tautomeric structures of β-Daucosterol and stigmasterol acetate. Illustration of tautomeric structures of Octamethylpicen-3-ol and coumaroylquinic acid methyl ester. Illustration of tautomeric structures of Chlorogenic acid methyl ester and Macranthoin F. Illustration of tautomeric structures of Macranthoin G, Di-isobutyryloxy-8-ethoxythymol, and Oxoageraphorone. Illustration of tautomeric structures of acetoxy-8-methoxy-9-isobutyryloxythymol and Di-isobutyryloxy-8-methoxythymol. Illustration of tautomeric structures of Isochaminic acid and Hydroxycar-3-ene-2-one.

      1 Aguilar-Guadarrama, B., Navarro, V., León-Rivera, I., and Rios, M.Y. (2009). Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bustamenta. Nat. Prod. Res. 23: 1559–1565.

      2 Barrio, G., Spengler, I., García, T. et al. (2011). Antiviral activity of Ageratina havanensis and major chemical compounds from the most active fraction. Rev. Bras. Farmacogn. 21: 915–920.

      3 Bohlmann, F. and Fiedler, L. (1978). Neuenerolidol-derivate a us Ageratina aschenborniana. Phytochemistry 17: 566–577.

      4 Davis, T.Z., Lee, S.T., Collett, M.G. et al. (2015). Toxicity of white snakeroot (Ageratina altissima) and chemical extracts of white snakeroot in goats. J. Agric. Food. Chem. 63: 2092–2097.

      5 Ding, J.K., Yu, Z., Wang, P. et al. (1991). The odorous constituents and the application of essential oil from Eupatorium adenophorum. Acta Bot. Yunnanica 13: 441–444.

      6 Ding, Z.H., Guo, Y.S., and Ding, J.K. (1999). Chemical constituents from the flower of Eupatorium adenophorum. Acta Bot. Yunnanica 21: 505–510.

      7 Dong, L.-M., Zhang, M., Xu, Q.-L. et al. (2017). Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 22: 592.

      8 Fischer, R., Vasilev, N., Twyman, R.M., and Schillberg, S. (2015). High-value products from plants: the challenges of process optimization. Curr. Opin. Biotechnol. 32: 156–162.

      9 García-Sánchez, E., Ramírez-López, C.B., Talavera-Alemán, A. et al. (2014). Absolute configuration of (13R)- and (13S)-labdane diterpenes coexisting in Ageratina jocotepecana. J. Nat. Prod. 77: 1005–1012.

      10 Harish Kumar, K., Shanmugavadivu, M., Ranjithkumar, R., and Selvam, K. (2014). Antibacterial activity of leaf extracts of Ageratina adenophora L medicinal plant of Nilgiris Hill, Tamilnadu against human pathogens. Int. J. Biosci. Nanosci. 1: 1–3.

      11 Herz, W. (2003). Chemistry of the Oxylobinae. Biochem. Syst. Ecol. 31: 963–993.

      12 Kundu, A., Saha, S., Walia, S., and Dutta, T. (2016). Antinemic potentiality of chemical constituents of Eupatorium adenophorum Spreng leaves against Meloidogyne incognita. Nat. Acad. Sci. Lett. 39: 145–149.

      13 Lallianrawna, S., Muthukumaran, R., Ralte, V. et al. (2013). Determination of total phenolic content, total flavonoid content and total antioxidant capacity of Ageratina adenophora (Spreng.) King & H. Rob. Sci. Vision 13: 149–156.

      14 Lee, S.T., Davis, T.Z., Gardner, D.R. et al. (2010). Tremetone and structurally related compounds in white snakeroot (Ageratina altissima): a plant associated with trembles and milk sickness. J. Agric. Food. Chem. 58: 8560–8565.

      15 Lee, S.T., Davis, T.Z., Cook, D., and Stegelmeier, B.L. (2012). Evaluation of drying methods and toxicity of rayless goldenrod (Isocoma pluriflora) and white snakeroot (Ageratina altissima) in goats. J. Agric. Food. Chem. 60: 4849–4853.

      16 Li, R.T., Ding, Z.H., and Ding, J.K. (1997). Chemical constituents from Eupatorium adenophorum. Acta Bot. Yunnanica 19: 196–200.

      17 Ma, Q.-P., Cheng, C.-R., Li, X.-F. et al. (2015). Chemistry, pharmacological activities and analysis of Ageratina adenophora. Asian J. Chem. 27: 4311–4316.

      18 Mohan, D.R. and Ramaswamy, M. (2007). Evaluaton of larvicidal activity of leaf extract of a weed plant, against two important species of mosquitoes, Aedes aegypti and Culex quinquefasciatus. Afr. J. Biotechnol. 6: 631–638.

      19 Monroy, O.C.


Скачать книгу