Astrobiology. Charles S. Cockell
Читать онлайн книгу.permission of wikicommons.
Schrödinger recognized that life made “order from disorder,” and, employing the second law of thermodynamics, according to which entropy (a measure of the homogenization of energy) increases as energy is dissipated in atoms or molecules, Schrödinger explained that life evades the decay to thermodynamic equilibrium by maintaining what he termed “negative entropy,” for example by gathering energy. The phrase “negative entropy” is rather unwieldy and counter-intuitive. It should be seen more as a popular statement about his views on life rather than an attempt to define a real physical process. The notion of negative entropy is not limited to life, however. Chemical reactions such as endothermic reactions (reactions that take up energy) are in some sense extracting energy from the surrounding environment to increase order.
Schrödinger's interpretation tends to give the impression that life is “struggling” against the laws of physics – attempting to maintain order against the ineluctable forces of the Universe that tend to disperse it into disorder. The problem with this view is that it does not explain why life is so successful. If living things are constantly struggling against the laws of physics, why does life seem to have been so tenacious and ubiquitous once it got started on Earth?
2.6 Life as a Dissipative Process
Another related way to view life is to focus less on the organisms themselves and their characteristics as single entities, and more on the process that life is involved with. We can think of life as a process driving the Universe more efficiently toward disorder than non-biological processes.
To understand this idea, consider my lunch sandwiches. If I place them on a table, and assuming they are not degraded by fungi (which they will be, but this is a thought experiment), it will take a very long time for the energy in their sugar and fat molecules to be released. Indeed, the energy in the sandwiches may not be released until they end up in Earth's crust during the movements of plate tectonics, heated to great temperatures in the far future when the sugars and fats will be turned into carbon dioxide. However, if I eat the sandwiches, within about an hour or two, their contained energy will be released as heat energy in my body, with some portion of it being used to build new molecules. I have accelerated, greatly, the dissipation of the sandwiches into energy. I have enhanced the rate at which the second law of thermodynamics has had its way with the sandwiches. Living things represent extraordinary local complexity and organization, but the process they are engaged in is accelerating the dissipation of energy and the run-down of the Universe. Local complexity in organisms is an inevitable requirement for constructing the biological machines necessary for this effect to occur. As the physical universe tends to favor processes that more rapidly dissipate energy, then life is contributing to the processes resulting from the second law of thermodynamics, not fighting it. Seen from this perspective, it is easier to understand why life is successful. It might even be inevitable where organic chemistry allows for it.
As with the individual characteristics of life, however, dissipative processes are not unique to life. The Universe is full of patterns and structures that result from the dissipation of energy. An example is the convective cells in the surface of the Sun (Figure 2.12). These complex structures emerge from convective cells that become spontaneously established within the material at the Sun's surface and represent an efficient way for heat to be dissipated. You can sometimes see similar convective cells in a pan of water or milk boiling on a stove. This emerging complexity results from the dissipation of energy. There is no mysterious physics at work. Similarly, living things are thought to represent exquisite examples of dissipative structures. Although living things are more complex than convective cells, the principles of emergent complexity that result from their dissipative behaviors are nonetheless merely physics at work. The elegance of this idea is that it explains why life is successful. It is not fighting the laws of physics, but is a consequence of these laws.
Figure 2.12 Complex structures can emerge in non-biological dissipative structures, such as these convective cells in the surface of the Sun. Each cell is about 700–1000 km across. We would not describe these dissipative structures as alive.
An obvious corollary, and implication, of these ideas is that life might be inevitable. Just as convective cells inevitably form in heated fluids and gases as a consequence of physical principles, if living things are merely dissipative structures, then the suggestion is that on any planet with liquid water, organic molecules, and appropriate environmental conditions for the assembly of replicating molecules, physical laws will essentially drive the emergence of life. You might like to discuss and debate this idea with others.
2.7 Life: Just a Human Definition?
Thus far, we have seen that it is difficult to define life. An obvious problem seems to be our inability to uniquely list or state the characteristics that sharply separate it from non-life. One answer to the problem of the definition of life is that life is simply a human word, an artificial definition created by us. It is what philosophers would call “a non-natural kind,” as opposed to a “natural kind.”
The term “natural kind” applies to a substance such as gold, whose characteristics can be exactly defined in terms of its physical properties (Figure 2.13). We can state the molecular mass, melting point, and a range of other definitive physical properties of gold that allow for an exact definition of what it is. The reason that it is a natural kind is that the word gold is used to denote a very specific type of atom. It is limited by something that can be described in very specific physical terms.
Figure 2.13 Gold can be uniquely defined using physical characteristics such as its melting temperature and atomic mass number. Is life in the same category of object?
A good example of a “non-natural kind” is a “chair” (Figure 2.14). If we define it as “something we can sit on,” then does that make my coffee table a chair? You might reply that a coffee table is not a chair because it has no vertical back on it. I might then show you a stool and claim that it too can therefore not be a chair and is more like a table. Thus, we launch into an endless circular discussion about what a chair is. The conversation is rather pointless because ultimately a chair is simply what we define it to be. If that includes coffee tables then so be it.
Figure 2.14 Perhaps life is more like a chair? Something whose definition depends more on human categorizations, rather than any fundamental physically derivable difference with other materials.
Similarly, maybe life is just a definition that encompasses an interesting segment of all organic chemistry that happens to do certain things, such as reproducing and growing. If we want to include viruses, then so be it; if not, then so be it. Perhaps the crucial point is that we all attempt to agree on a definition that we are going to use that includes all chemistry we are going to call “life.”
The notion that life might be a human definition and not rooted in physically separable characteristics might make some intuitive sense. Organic chemistry runs along a continuum from simple gases, such as methane, through to more complex organic molecules, through molecules that can replicate, such as certain ribonucleic acids, past molecules wrapped in protein that can replicate if given the correct environment (viruses) through to cellular materials and on to single-celled organisms and multicellular organisms. Perhaps life is a division we place somewhere along this continuum that will inevitably have certain materials whose inclusion on either side of the line will always be a matter of debate.
2.8 Does It Matter Anyway?
There is no doubt that studying the matter that we broadly refer to as “life” is enormously interesting. That is not