Body Sensor Networking, Design and Algorithms. Saeid Sanei

Читать онлайн книгу.

Body Sensor Networking, Design and Algorithms - Saeid Sanei


Скачать книгу
Bagala, F., Klenk, J., Cappello, A. et al. (2013). Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21 (4): 624–633.

      16 16 Barth, J., Sünkel, M., Bergner, K. et al. (2012). Combined analysis of sensor data from hand and gait motor function improves automatic recognition of Parkinson's disease. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5122–5125. IEEE.

      17 17 Benson, L.C., Clermont, C.A., Watari, R. et al. (2019). Automated accelerometer-based gait event detection during multiple running conditions. Sensors (Basel) 19 (7): 1–19.

      18 18 Li, R.T., Kling, S.R., Salata, M.J. et al. (2016). Wearable performance devices in sports medicine. Sports Health 8 (1): 74–78.

      19 19 Simon, S.R. (2004). Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. Journal of Biomechanics 37 (12): 1869–1880.

      20 20 Jarchi, D., Pope, J., Lee, T.K.M. et al. (2018). A review on accelerometry based gait analysis and emerging clinical applications. IEEE Reviews in Biomedical Engineering 11: 177–194.

      21 21 Walter, P.L. (2006). The history of the accelerometer 1920s–1996: prologue and epilogue. Sound & vibration 41 (1): 84–92.

      22 22 Fennelly, J., Ding, S., Newton, J., and Zhao, Y. (2012). Thermal MEMS accelerometers fit many applications. Sensor Magazine 3: 18–20.

      23 23 Elble, R.J. (2005). Gravitational artifact in accelerometric measurements of tremor. Clinical Neurophysiology 116 (7): 1638–1643.

      24 24 Boser, B.E. and Howe, R.T. (1996). Surface micromachined accelerometers. IEEE Journal of Solid-State Circuits 31 (3): 366–375.

      25 25 Skog, I., Handel, P., Nilsson, J.O., and Rantakokko, J. (2010). Zero-velocity detection—an algorithm evaluation. IEEE Transactions on Biomedical Engineering 57 (11): 2657–2666.

      26 26 Kos, A., Tomazic, S., and Umek, A. (2016). Suitability of smartphone inertial sensors for real-time biofeedback applications. Sensors (Basel) 16 (3): 301.

      27 27 Mourcou, Q., Fleury, A., Franco, C. et al. (2015). Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors (Basel) 15 (9): 23168–23187.

      28 28 Kaiyu, T. and Malcolm, H.G. (1999). A practical gait analysis system using gyroscopes. Medical Engineering & Physics 21 (2): 87–94.

      29 29 Hestnes, E. (2016) Performance evaluation of smartphone inertial sensors measurement for range of motion. NTNTU, Master thesis, 2016.

      30 30 Geen, J. and Krakauer, D. (2003). New iMEMS angular-rate-sensing gyroscope. Analog Dialogue 37 (3): 1–4.

      31 31 Belli, A., Bui, P., Berger, A. et al. (2001). A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. Journal of Biomechanics 34 (1): 105–112.

      32 32 Tesio, L., Monzani, M., Gatti, R., and Franchignoni, F. (1995). Flexible electrogoniometers: kinesiological advantages with respect to potentiometric goniometers. Clinical Biomechanics 10 (5): 275–277.

      33 33 Donno, M., Palange, E., Di Nicola, F. et al. (2008). A new flexible optical fiber goniometer for dynamic angular measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement 57 (8): 1614–1620.

      34 34 Murley, G.S., Menz, H.B., and Landorf, K.B. (2009). Foot posture influences the electromyographic activity of selected lower limb muscles during gait. Journal of Foot and Ankle Research 2 (35) https://doi.org/10.1186/1757-1146-2-35.

      35 35 Hadi, A., Razak, A., Zayegh, A. et al. (2012). Foot plantar pressure measurement system: a review. Sensors (Basel) 12 (7): 9884–9912.

      36 36 De Rossi, S.M., Lenzi, T., Vitiello, N. et al. (2011). Development of an in-shoe pressure sensitive device for gait analysis. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA (30 August–3 September 2011), 5637–5640. IEEE.

      37 37 Tsalaile, T., Naqvi, S. M., Nazarpour, K., Sanei S., and Chambers, J. A. (2008) Blind source extraction of heart sound signals from lung sound recordings exploiting periodicity of the heart sound. 33rd IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas (30 March–4 April 2008).

      38 38 Tsalaile, T., Sameni, R., Sanei, S. et al. (2009). Sequential blind source extraction for quasi-periodic signals with time-varying period. IEEE Transaction on Biomedical Engineering 56 (3): 646–655.

      39 39 Makkiabadi, B. Jarchi, D. and Sanei, S. (2012) A new time domain convolutive BSS of heart and lung sounds. Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP, Kyoto, Japan (25– March 2012).

      40 40 Ghaderi, F., Sanei, S., and McWhirter, J. (2010) Blind source extraction of cyclostationary sources with common cyclic frequencies. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Dallas, TX (14–19 March 2010).

      41 41 Pacela, A.F. (1966). Impedance pneumography: a survey of instrumentation techniques. Medical & Biological Engineering 4 (1): 1–15.

      42 42 Aminiahidashti, H., Shafiee, S., Zamani Kiasari, A., and Sazgar, M. (2018). Applications of end-tidal carbon dioxide (ETCO2) monitoring in emergency department; a narrative review. Emergency (Tehran) 6 (1): e5.

      43 43 Carrano, J. (2005). Chemical and Biological Sensor Standards Study, 1–30. Arlington, CA: DARPA report.

      44 44 Smith, A. L. (2005) Quartz crystal microbalance/heat conduction calorimetry. Online American Laboratory. https://americanlaboratory.com/914-Application-Notes/36163-Quartz-Crystal-Microbalance-Heat-Conduction-Calorimetry/ (accessed 25 November 2019).

      45 45 Clark, L.C. Jr. and Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45.

      46 46 Vigneshvar, S., Sudhakumari, C.C., Senthilkumaran, B., and Prakash, H. (2016). Recent advances in biosensor technology for potential applications – an overview. Frontiers in Bioengineering and Biotechnology 4 (11) https://doi.org/10.3389/fbioe.2016.00011.

      47 47 Kazlauskaite, R., Soni, S., Evans, A.T. et al. (2009). Accuracy of self-monitored blood glucose in type 2 diabetes. Diabetes Technology & Therapeutics 11 (6): 385–392. https://doi.org/10.1089/dia.2008.0111.

      48 48 Weston, P. (2017) World's first diabetes app will be able to check glucose levels without drawing a drop of blood and will be able to reveal what a can of coke REALLY does to sugar levels. MailOnline (24 August). www.dailymail.co.uk/health/article-4817080/First-health-app-checks-glucose-levels-without-blood.html (accessed 26 November 2019).

      49 49 Analog Devices, Data Sheets (1996)ADXL50/ADXL05 Evaluation Modules. https://www.alldatasheet.com/datasheet-pdf/pdf/88616/AD/ADXL50.html (accessed 6 January 2020). Norwood, M.A., Alldatasheet.com.

      50 50 Middelhoek, S., Bellekom, A.A., Dauderstadt, U. et al. (1995). Silicon sensors. Measurement Science and Technology 6 (12): 1641.

      51 51 Sze, S.M. (1994). Biosensors. In: Semiconductor Sensors (ed. S.M. Sze). Wiley.

      52 52 Wang, B., Takahashi, S., Du, X., and Anzai, J. (2014). Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensors (Basel) 4: 243–256.

      53 53 Erden, P.E. and Kilic, E. (2013). A review


Скачать книгу