Electromagnetic Simulation Using the FDTD Method with Python. Dennis M. Sullivan
Читать онлайн книгу. (1.23c)
The program fd1d_1_5.py simulates a sinusoidal wave hitting a lossy medium that has a dielectric constant of 4 and a conductivity of 0.04. The pulse is generated at the left side and propagates to the right (Fig. 1.6). Notice that the waveform in the medium is absorbed before it hits the boundary, so we do not have to worry about absorbing boundary conditions.
PROBLEM SET 1.7
1 Run program fd1d_1_5.py to simulate a complex dielectric material. Duplicate the results of Fig. 1.6.
2 Verify that your calculation of the sine wave in the lossy dielectric is correct: That is, it is the correct amplitude going into the slab, and then it attenuates at the proper rate (Appendix 1.A).
3 How would you write an absorbing boundary condition for a lossy material?
4 Simulate a pulse hitting a metal wall. This is very easy to do, if you remember that metal has a very high conductivity. For the complex dielectric, just use σ = 1e6 or any large number. (It does not have to be the correct conductivity of the metal, just very large.) What does this do to the FDTD parameters ca and cb? What result does this have for the field parameters Ex and Hy? If you did not want to specify dielectric parameters, how else would you simulate metal in an FDTD program?
1.A APPENDIX
When a plane wave traveling in medium 1 strikes medium 2, the fraction that is reflected is given by the reflection coefficient Γ, and the fraction that is transmitted into medium 2 is given by the transmission coefficient τ. These are determined by the intrinsic impedances η1 and η2 of the respective media (6):
The impedances are given by
(1.A.3)
The complex relative dielectric constant
For the case where μ = μ0, Eq. (1.A.1) and Eq. (1.A.2) become
(1.A.4)
(1.A.5)
The amplitude of an electric field propagating in the positive z direction in a lossy dielectric medium is given by
where E0 is the amplitude at z = 0. The wave number k is determined by
(1.A.6)
REFERENCES
1 1. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., vol. 17, 1966, pp. 585–589.
2 2. A. Taflove and M. Brodwin, Numerical solution of steady state electromagnetic scattering problems using the time‐dependent Maxwell’s equations, IEEE Trans. Microwave Theory Tech., vol. 23, 1975, pp. 623–730.
3 3. A. Taflove, Computational Electrodynamics: The Finite‐Difference Time‐Domain Method, 3rd Edition, Boston, MA: Artech House, 1995.
4 4. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL: CRC Press, 1993.
5 5. G. Mur, Absorbing boundary conditions for the finite‐difference approximation of the time domain electromagnetic field equations, IEEE Trans. Electromagn. Compat., vol. 23, 1981, pp. 377–384.
6 6. D. K. Cheng, Field and Wave Electromagnetics¸ Menlo Park, CA: Addison‐Wesley, 1992.
PYTHON PROGRAMS USED TO GENERATE FIGURES IN THIS CHAPTER
""" fd3d_1_1.py: 1D FDTD Simulation in free space """ import numpy as np from math import exp from matplotlib import pyplot as plt ke = 200 ex = np.zeros(ke) hy = np.zeros(ke) # Pulse parameters kc = int(ke / 2) t0 = 40 spread = 12 nsteps = 100 # Main FDTD Loop for time_step in range(1, nsteps + 1): # Calculate the Ex field for k in range(1, ke): ex[k] = ex[k] + 0.5 * (hy[k - 1] - hy[k]) # Put a Gaussian pulse in the middle pulse = exp(-0.5 * ((t0 - time_step) / spread) ** 2) ex[kc] = pulse # Calculate the Hy field for k in range(ke - 1): hy[k] = hy[k] + 0.5 * (ex[k] - ex[k + 1]) # Plot the outputs as shown in Fig. 1.2 plt.rcParams['font.size'] = 12 plt.figure(figsize=(8, 3.5)) plt.subplot(211) plt.plot(ex, color='k', linewidth=1) plt.ylabel('E$_x$', fontsize='14') plt.xticks(np.arange(0, 201, step=20)) plt.xlim(0, 200) plt.yticks(np.arange(-1, 1.2, step=1)) plt.ylim(-1.2, 1.2) plt.text(100, 0.5, 'T = {}'.format(time_step), horizontalalignment='center') plt.subplot(212) plt.plot(hy, color='k', linewidth=1) plt.ylabel('H$_y$', fontsize='14') plt.xlabel('FDTD cells') plt.xticks(np.arange(0, 201, step=20)) plt.xlim(0, 200) plt.yticks(np.arange(-1, 1.2, step=1)) plt.ylim(-1.2, 1.2) plt.subplots_adjust(bottom=0.2, hspace=0.45) plt.show() """ fd3d_1_2.py: 1D FDTD Simulation in free space Absorbing Boundary Condition added """ import numpy as np from math import exp from matplotlib import pyplot as plt ke = 200 ex = np.zeros(ke) hy = np.zeros(ke) # Pulse parameters kc = int(ke / 2) t0 = 40 spread = 12 boundary_low = [0, 0] boundary_high = [0, 0] nsteps = 250 # Dictionary to keep track of desired points for plotting plotting_points = [ {'num_steps': 100, 'data_to_plot': None, 'label': ''}, {'num_steps': 225, 'data_to_plot': None, 'label': ''}, {'num_steps': 250, 'data_to_plot': None, 'label': 'FDTD cells'} ] # Main FDTD Loop for time_step in range(1, nsteps + 1): # Calculate the Ex field for k in range(1, ke): ex[k] = ex[k] + 0.5 * (hy[k - 1] - hy[k]) # Put a Gaussian pulse in the middle pulse = exp(-0.5 * ((t0 - time_step) / spread) ** 2) ex[kc] = pulse # Absorbing Boundary Conditions ex[0] = boundary_low.pop(0) boundary_low.append(ex[1]) ex[ke - 1] = boundary_high.pop(0) boundary_high.append(ex[ke - 2]) # Calculate the Hy field for k in range(ke - 1): hy[k] = hy[k] + 0.5 * (ex`[k] - ex[k + 1]) # Save data at certain points for later plotting for plotting_point in plotting_points: if time_step == plotting_point['num_steps']: plotting_point['data_to_plot'] = np.copy(ex) # Plot the outputs as shown in Fig. 1.3 plt.rcParams['font.size'] = 12 fig = plt.figure(figsize=(8, 5.25)) def plot_e_field(data, timestep, label): """Plot of E field at a single time step""" plt.plot(data, color='k', linewidth=1) plt.ylabel('E$_x$', fontsize='14') plt.xticks(np.arange(0, 199, step=20)) plt.xlim(0, 199) plt.yticks(np.arange(0, 1.2, step=1)) plt.ylim(-0.2, 1.2) plt.text(100, 0.5, 'T = {}'.format(timestep), horizontalalignment='center') plt.xlabel('{}'.format(label)) # Plot the E field at each of the time steps saved earlier