Nanopharmaceutical Advanced Delivery Systems. Группа авторов

Читать онлайн книгу.

Nanopharmaceutical Advanced Delivery Systems - Группа авторов


Скачать книгу
42, 1417–1424, 2010.

      57. Rao, Y., Inwati, G.K., Singh, M., Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Future Sci. OA., 3, FSO239, 2017.

      58. Mohammed Fayaz, A., Girilal, M., Venkatesan, R., Kalaichelvan, P.T., Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf. B Biointerfaces, 88, 287–291, 2011.

      60. Ismail, E.H., Saqer, A.M.A., Assirey, E., Naqvi, A., Okasha, R.M., Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. Int. J. Mol. Sci. Artic., 19, 2612, 2018.

      61. Błaszkiewicz, P., Kotkowiak, M., Coy, E., Dudkowiak, A., Laser-Induced Optoacoustic Spectroscopy Studies of Inorganic Functionalized Metallic Nanorods. J. Phys. Chem. C, 123, 27181–27186, 2019.

      62. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B, 110, 7238–7248, 2006.

      63. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, vol. 25, Springer, Berlin Heidelberg, 1995.

      64. Prodan, E., Radloff, C., Halas, N.J., Nordlander, P., A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science (80-.), 302, 419–422, 2003.

      65. Yoo, M.K., Park, I.K., Lim, H.T., Lee, S.J., Jiang, H.L., Kim, Y.K., Choi, Y.J., Cho, M.H., Cho, C.S., Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater., 8, 3005–3013, 2012.

      66. Shevtsov, M.A., Nikolaev, B.P., Yakovleva, L.Y., Parr, M.A., Marchenko, Y.Y., Eliseev, I., Dobrodumov, A.V., Zlobina, O., Zhakhov, A., Ischenko, A.M., Pitkin, E., Multhoff, G., 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J. Control. Release, 220, 329–340, 2015.

      67. Turkbey, B., Agarwal, H.K., Shih, J., Bernardo, M., McKinney, Y.L., Daar, D., Griffiths, G.L., Sankineni, S., Johnson, L., Grant, K.B., Weaver, J., Rais-Bahrami, S., Harisinghani, M., Jacobs, P., Dahut, W., Merino, M.J., Pinto, P.A., Choyke, P.L., A phase i dosing study of ferumoxytol for MR lymphography at 3 T in patients with prostate cancer. Am. J. Roentgenol., 205, 64–69, 2015.

      68. Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., Karewicz, A., Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 12, 617, 2019.

      69. Huang, Y., Mao, K., Zhang, B., Zhao, Y., Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C, 70, 763–771, 2017.

      70. Butoescu, N., Jordan, O., Burdet, P., Stadelmann, P., Petri-Fink, A., Hofmann, H., Doelker, E., Dexamethasone-containing biodegradable superparamagnetic microparticles for intraarticular administration: Physicochemical and magnetic properties, in vitro and in vivo drug release. Eur. J. Pharm. Biopharm., 72, 529–538, 2009.

      71. Pantapasis, K., Anton, G.C., Bontas, D.A., Sarghiuta, D., Grumezescu, A.M., Holban, A.M., Bioengineered nanomaterials for chemotherapy. Nanostructures Cancer Ther., pp. 23–49, Elsevier Inc., 2017.

      72. Neslihan Gursoy, R. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.

      73. Cherniakov, I., Domb, A.J., Hoffman, A., Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin. Drug Deliv., 12, 1121–1133, 2015.

      74. Nardin, I. and Köllner, S., Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv. Drug Deliv. Rev., 142, 128–140, 2019.

      75. Krishnaswamy, K. and Orsat, V., Sustainable Delivery Systems Through Green Nanotechnology. Nano-Microscale Drug Deliv. Syst. Des. Fabr., pp. 17–32, Elsevier, 2017.

      77. Chawla, R., Jaiswal, S., Mishra, B., Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design*. Expert Opin. Drug Deliv., 11, 31–43, 2014.

      78. Liechty, W.B. and Peppas, N.A., Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 80, 241–246, 2012.

      79. Deirram, N., Zhang, C., Kermaniyan, S.S., Johnston, A.P.R., Such, G.K., pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun., 40, 1800917, 2019.

      80. Lowes, M.A., Bowcock, A.M., Krueger, J.G., Pathogenesis and therapy of psoriasis. Nature, 445, 866–873, 2007.

      81. Duncan, R., The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2, 347–360, 2003.

      82. Kamada, H., Tsutsumi, Y., Yoshioka, Y., Yamamoto, Y., Kodaira, H., Tsunoda, S.I., Okamoto, T., Mukai, Y., Shibata, H., Nakagawa, S., Mayumi, T., Design of a pH-Sensitive Polymeric Carrier for Drug Release and Its Application in Cancer Therapy. Clin. Cancer Res., 10, 2545–2550, 2004.

      83. Ward, M.A. and Georgiou, T.K., Thermoresponsive Polymers for Biomedical Applications. Polymers (Basel), 3, 1215–1242, 2011.

      84. Sánchez-Moreno, P., de Vicente, J., Nardecchia, S., Marchal, J.A., Boulaiz, H., Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications. Nanomaterials, 8, 935, 2018.

      85. Zhong, Y., Meng, F., Deng, C., Zhong, Z., Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 15, 1955–1969, 2014.

      86. Zorlutuna, P., Vrana, N.E., Khademhosseini, A., The expanding world of tissue engineering: The building blocks and new applications of tissue engineered constructs. IEEE Rev. Biomed. Eng., 6, 47–62, 2013.

      87. Kaoud, H. A. E.-S., Introductory Chapter: Concepts of Tissue Regeneration. Tissue Regen., InTech, 2018.

      88. Veronesi, M.C., Aldouby, Y., Domb, A.J., Kubek, M.J., Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res., 1303, 151–160, 2009.

      89. Liu, Z., Jiang, M., Kang, T., Miao, D., Gu, G., Song, Q., Yao, L., Hu, Q., Tu, Y., Pang, Z., Chen, H., Jiang, X., Gao, X., Chen, J., Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials, 34, 3870–3881, 2013.

      90. Cao, Y.C., Jin, R., Nam, J.M., Thaxton, C.S., Mirkin, C.A., Raman Dye-Labeled Nanoparticle Probes for Proteins. J. Am. Chem. Soc., 125, 14676–14677, 2003.

      91. Uebelhoer, L., Han, J.H., Callendret, B., Mateu, G., Shoukry, N.H., Hanson, H.L., Rice, C.M., Walker, C.M., Grakoui, A., Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog., 4, 1000143, 2008.

      92. Han, J., Zhao, D., Li, D., Wang, X., Jin, Z., Zhao, K., Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel), 10, 31, 2018.

      93. Zhao, K., Sun, Y., Chen, G., Rong, G., Kang, H., Jin, Z., Wang, X., Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the


Скачать книгу