Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики. Билл Фрэнкс
Читать онлайн книгу.большими данными, что не будет способна на какой-либо прогресс. Ключевой момент здесь, как мы увидим в главе 8, – наличие нужных людей, которые не допустят этого. Вам нужны правильные люди, способные справиться с проблемами, которые возникают с появлением больших данных. Если такие специалисты есть, организации могут избежать пробуксовки в своем развитии.
Другой риск заключается в том, что расходы по сбору больших данных растут быстрее, чем возможности организации по их использованию. Избежать этой проблемы можно, лишь обеспечив соответствующий темп развития. Нет необходимости браться за все сразу и с завтрашнего дня собирать 100 % информации, поступающей из каждого нового источника данных. Необходимо собирать и изучать образцы новых данных. С их помощью можно провести экспериментальный анализ, чтобы определить, что действительно важно в каждом источнике и как каждый из них может быть использован. Основываясь на этом, организация будет готова к проведению полномасштабного эффективного анализа источника данных.
Вероятно, самый серьезный риск, связанный с источниками больших данных, – это конфиденциальность. Если бы все люди были хорошими и честными, то нам не пришлось бы беспокоиться о конфиденциальности. Однако это не так. Нехорошими и нечестными бывают не только люди, но и компании. Существуют даже нехорошие и нечестные правительства. Вот поэтому большие данные могут доставить неприятности. Проблему конфиденциальности, связанную с большими данными, необходимо решать, иначе их потенциал невозможно реализовать полностью. Без надлежащего ограничения большие данные могут поднять такую волну протеста, что некоторые их источники будут полностью закрыты.
Не так давно стало известно, как несоблюдение безопасности привело к тому, что номера кредитных карт и правительственные документы были украдены и опубликованы в интернете. Не будет преувеличением сказать, что, если данные где-то хранятся, кто-то рано или поздно попытается их украсть. Как только злоумышленники получат к ним доступ, они будут их использовать в своих целях. Из-за непродуманной или ненадлежащим образом определенной политики конфиденциальности крупные организации сталкивались с проблемами: данные были использованы таким образом, который пользователи не понимали или не одобряли, и это вызывало негативную реакцию. По мере развития сферы больших данных должны развиваться сферы самостоятельного и правового регулирования их использования.
Наличие саморегулирования критически важно. Оно говорит о том, что отрасли не все равно. Участники рынка должны обеспечить саморегулирование и разработать правила, которых может придерживаться каждый. Такие правила обычно более эффективны и менее жестки, чем те, которые вводятся государственными органами, когда отрасль не может контролировать себя самостоятельно.
Принимая во внимание природу многих источников больших данных, нетрудно понять, что конфиденциальность представляет собой серьезную проблему.