.
Читать онлайн книгу.Esiste una relazione di dipendenza funzionale tra la comprensione numerica ed il calcolo. Si può quindi affermare che oltre alla localizzazione di una struttura neuronale preposta all’elaborazione di stimoli legati al numero, esiste un’intera rete distribuita a livello neuronale dove sono ripartiti i diversi compiti che accompagneranno l’analisi della stimolazione, l’identificazione dello stimolo, l’assegnazione di valore e quantità e la sua manipolazione. Tutto questo prima ancora di poter pronunciare la parola corrispondente a quella cifra.
Ma se una struttura neuronale si è distinta nella gestione della matematica, quella è stata il solco intraparietale la cui morfologia (profondità e lunghezza) è stata correlata ai deficit nel processo di subitizzazione nei minori con sindrome di Turner e in quelli con discalculia, non risultando significativo con i compiti di conteggio o confronto di quantità. (Pérez et al., 2016)
Riferimenti
Alexiou, A., Mantzavinos, V. D., Greig, N. H., & Kamal, M. A. (2017). A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Frontiers in Aging Neuroscience, 9(MAR). https://doi.org/10.3389/fnagi.2017.00077
Almira, J. M., & Aguilar Domingo, M. (2016). Neuromatemáticas : el lenguaje eléctrico del cerebro. Consejo Superior de Investigaciones Científicas.
Damasio, H. (2018). Phineas Gage: The brain and the behavior. Revue Neurologique, 174(10), 738–739. https://doi.org/10.1016/j.neurol.2018.09.005
Dehaene, S., & Cognition, L. C. (1995). Towards an anatomical and functional model of number processing. In Mathematical. Retrieved from https://books.google.com/books?hl=es&lr=&id=eK4egLfRgGkC&oi=fnd&pg=PA83&ots=AG-QTQx2nN&sig=Qkaf1MGkmhJwJasXvtlcufi0gG0
Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9(1), 6–10. https://doi.org/10.1016/j.tics.2004.11.004
Pérez, N. E., Gómez, Y. A., Suárez, R. M., Morales, B. R., Cápiro, M. R., Isangue, R. M., … Sosa, M. V. (2016). A Study of Intraparietal Sulcus’ Morphometric Properties in Children with Developmental Dyscalculia Exhibiting Significant Subitizing Deficits. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 16, 53–74.
Vargas Vargas, A. R. (2016). Matemáticas y neurociencias: una aproximación al desarrollo del pensamiento matemático desde una perspectiva biológica. Revista Iberoamericana de Educación Matemática, 36, 37–46. Retrieved from www.fisem.org/web/union
2. LO Sviluppo Matematico
Sebbene fino ad ora si sia parlato delle diverse strutture neuronali che intervengono nell’elaborazione matematica, bisogna tenere conto che si tratta di un processo che si sviluppa nel tempo, grazie all’apprendimento, in modo che abilità e capacità si incrementino con la pratica.
Nonostante il fatto che alcuni teorici difendano l’approccio della matematica innata o naturale che serve a identificare le differenze tra le quantità, questa ha svolto la sua funzione all’inizio della civiltà umana, e in seguito la rappresentazione dei numeri, la divisione delle quantità ed il rapporto di proporzione tra di esse, così come lo sviluppo della matematica stessa ha permesso il progresso della conoscenza nello stesso momento in cui la società diventava sempre più complessa.
Matematica che è stata plasmata in tutti i tipi di calcoli, sia nel campo del commercio, che dell’astronomia o dell’edilizia, tra gli altri, in modo che con il progresso di questa scienza, i sistemi su cui questi settori si basano sono stati perfezionati.
Tutto ciò ha portato allo sviluppo di diversi studi basati sulla matematica che vengono trasmessi dai primi anni di scuola all’università, aumentando ogni anno di complessità. Nonostante sia una materia obbligatoria, c’è chi sostiene che il numero di ore dedicate sia insufficiente, e anche che le materie di matematica applicata dovrebbero essere incorporate nella scuola, ad esempio l’economia, che alla fine degli studi consente allo studente di essere in grado di destreggiarsi nel mondo del lavoro, così come altre competenze orientate allo sviluppo di un curriculum professionale o di lavoro autonomo.
Ma tutto quanto sopra si basa sull’apprendimento e all’interno di un sistema di insegnamento formale, in modo che l‘“esperto” che è l’insegnante cerchi di trasmettere la sua conoscenza ed “esperienza” con la matematica allo studente in modo che questo a poco a poco sviluppi le sue competenze, sapendo che nell’anno successivo non solo aumenterà la complessità della materia, ma si baserà anche sull’apprendimento precedente. Una caratteristica che conferisce un certo grado di difficoltà in più, soprattutto a chi non riesce a superare la materia o lo fa con un apprendimento “debole”, che porta “molti” studenti a ritenere che la matematica non è la loro materia preferita, cercando di “liberarsene” senza approfondirne l’apprendimento.
La Funzione dell’Apprendimento
Quando si pensa all’apprendimento, di solito lo si fa in relazione agli studi, quindi più anni una persona dedica alla formazione in una determinata materia, più alto sarà il suo livello di apprendimento e, al contrario, se una persona non è andata a scuola o ha abbandonato prima di completare gli studi, si può considerare che non abbia completato il proprio ciclo di apprendimento. Ma questa visione, nonostante non sia errata, è limitata, poiché viene preso in considerazione solo un campo di apprendimento relativo all’ambito accademico. Il concetto di apprendimento è più ampio e coinvolge qualsiasi nuova conoscenza o abilità che non era stata precedentemente posseduta e che ora viene acquisita.
Pertanto, competenze e abilità possono essere apprese oltre alle conoscenze teoriche, un esempio di questo può essere visto quando si impara a guidare, infatti si devono superare due tipi di test per ottenere la patente di guida, uno di tipo teorico, dove si deve dimostrare padronanza delle conoscenze relative al veicolo e al codice della strada; e l’esame pratico dove si dimostrano le capacità necessarie alla guida in città o in autostrada, senza mettere in pericolo i pedoni o altri veicoli, nel rispetto delle norme stabilite. Se la persona fallisce in uno dei due test non si ritiene che possa ottenere la patente di guida, poiché sarebbe un segno di apprendimento incompleto.
In altri casi, l’apprendimento è solo teorico, essendo superato mediante prove a scelta multipla o di scrittura; o esclusivamente pratico, la cui valutazione viene solitamente realizzata eseguendo quell’abilità per dimostrare la padronanza. L’apprendimento può essere considerato come un processo naturale che fa parte delle caratteristiche di molti esseri viventi, permette loro di dare una risposta migliore alle richieste dell’ambiente, in quanto si perfeziona attraverso tentativi ed errori, o altre pratiche di apprendimento, per cui richiede:
- Una capacità sensibile con cui percepire il mondo esterno.
- Un trattamento, anche elementare, di informazioni sensibili che provocherà una risposta.
- Un sistema di archiviazione delle informazioni, in cui vengono raccolte sia le informazioni sensibili che la risposta e le relative conseguenze.
È proprio a questo punto del feedback sulla risposta che si inizia a delimitare il processo di apprendimento, che consente di ottimizzare il modo di soddisfare le esigenze ambientali, adattandosi ad esse.
Senza l’apprendimento, sarebbe solo una risposta più o meno fortuita, ogni volta che si presenta uno stimolo, sebbene sia lo stesso più e più volte. Come accade a quelle persone che, a causa di qualche infortunio e trauma cranico, non possono accedere alla memoria a lungo termine, affidandosi esclusivamente alla memoria a breve termine, dove, dopo pochi istanti, quei “ricordi” si dissipano e tutto sembra nuovo e originale. Pertanto, l’apprendimento può essere considerato come un processo superiore, a cui partecipano altri più basilari, come la sensazione, la percezione, l’attenzione, la memoria e le emozioni.
A livello cerebrale ci sono diversi sistemi che parteciperanno al processo di apprendimento, come il sistema nervoso periferico, incaricato di ricevere informazioni sensoriali-ricettive