Человек, который разгадал рынок. Как математик Джим Саймонс заработал на фондовом рынке 23 млрд долларов. Грегори Цукерман

Читать онлайн книгу.

Человек, который разгадал рынок. Как математик Джим Саймонс заработал на фондовом рынке 23 млрд долларов - Грегори Цукерман


Скачать книгу
с первого семестра, став преподавателем МТИ, дано важное описание дифференциальных уравнений в частных производных применительно к геометрии. Стандартным примером из этой области является поверхность мыльной пленки, покрывающей проволочную рамку, которую опустили, а затем достали из мыльного раствора. Такая поверхность имеет наименьшую площадь, по сравнению с любой другой поверхностью, ограниченной аналогичным проволочным контуром. В XIX веке бельгийский физик Жозеф Плато, проводя эксперименты с мыльной пленкой, задался вопросом, всегда ли возможны такие поверхности с «минимальными» площадями и являются ли они настолько ровными, что каждая точка их пространства выглядит одинаково, независимо от того, насколько сложна или извилиста проволочная рамка.

      Ответ на поставленный им вопрос, который в итоге получил название «задача Плато», удалось найти, по крайней мере применительно к обычным, двумерным поверхностям, что в 1930 году доказал один математик из Нью-Йорка. Саймонс хотел выяснить, является ли это верным для минимальных поверхностей с более сложными поверхностями – то, что геометры называют минимальными поверхностями в римановых многообразиях.

      Математики, которые занимаются решением теоретических задач, зачастую с головой погружаются в свою работу: годами они видят в снах решение своей задачи, мечтают и размышляют о ней во время прогулок. Те, кто не сталкивался с так называемой абстрактной или чистой математикой, расценят это как бессмысленное занятие.

      Однако Саймонс не просто решал уравнения, как какой-то старшеклассник. Он надеялся открыть и систематизировать универсальные принципы, правила и законы, которые расширят понимание об этих математических объектах.

      Альберт Эйнштейн утверждал, что есть естественный порядок вещей; можно сказать, что математики, наподобие Саймонса, занимаются поиском доказательства существования такого мироустройства. В этой работе заключается истинная красота, особенно когда в результате удается раскрыть новые сведения о естественном порядке Вселенной. Подобные теории зачастую находят практическое применение, даже по прошествии многих лет, расширяя наши познания о Вселенной.

      В результате, благодаря разговорам с Фредериком Альмгреном-младшим, профессором из Принстонского университета, который нашел решение этой задачи в трех измерениях, Саймонс смог добиться существенного прорыва. Джеймс создал собственное дифференциальное уравнение в частных производных, известное как «уравнение Саймонса», и использовал его для разработки единого решения для шести измерений, а также предоставил контрпример для седьмого измерения. Спустя какое-то время трое итальянцев, в том числе обладатель Филдсовской премии Энрико Бомбиери, доказали, что приведенный контрпример был верен.

      В 1968 году Саймонс опубликовал статью «Минимальные поверхности в римановых многообразиях», которая стала фундаментальной работой для геометров, а также оказалась полезной для ряда смежных дисциплин. Исследователи по-прежнему


Скачать книгу