Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Читать онлайн книгу.latitude thermospheric winds by rocket and ground‐based techniques and their interpretation using a three‐dimensional time‐dependent dynamical model. Planetary and Space Science, 28, 919–932.
67 Richmond, A., Ridley, E. C., & Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters., 19, 601–604. doi.org/10.1029/92GL00401
68 Richmond, A. D. (1992). Assimilative mapping of ionospheric electrodynamics. Advances in Space Research, 12(6), 659–668.
69 Richmond, A. D. (2010). On the ionospheric application of Poynting’s theorem. Journal of Geophysical Research. 115, A10311. doi:10.1029/2010JA015768
70 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: technique. Journal of Geophysical Research, 93, A6, 5741–5759.
71 Ridley, A. J., Deng, Y., & Toth, G. (2006). The global ionosphere‐thermosphere model. Journal of Atmospheric and Solar‐Terrestrial Physics, 68. doi:10.1016/j.jastp.2006.01.008
72 Ridley, A. J., Gombosi, T. I., & De Zeeuw, D. L. (2004). Ionospheric control of the magnetospheric configuration: Conductance. Annals of Geophysics, 22, 567–584.
73 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1997). Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 102(A7), 14563–14579.
74 Ritter, P., Lühr, H., Viljanen, A., Amm, O., Pulkkinen, A., & Sillanpää, I. (2004). Ionospheric currents estimated simultaneously from CHAMP satellite and IMAGE ground‐based magnetic field measurements: a statistical study at auroral latitudes. Annals of Geophysics, 22, 427–430.
75 Robinson, R. M., Vondrak, R. R., Miller, K., & Hardy, D. (1987). On calculating ionospheric conductance from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92(A3), 2565–2569.
76 Roble, R., & Ridley, E., (1987). An auroral model for the NCAR thermospheric general circulation model (TGCM). Annals of Geophysics, 5A(6), 369–382.
77 Roble, R. G., Ridley, E. C., & Dickinson, R. E. (1987). On the global mean structure of the thermosphere. Journal of Geophysical Research, 92(A8), 8745–8758.
78 Scherliess, L., Schunk, R. W., Sojka, J. J., & Thompson, D. C. (2004). Development of a physics‐based reduced state Kalman filter for the ionosphere. Radio Science, 39, RS1S04. doi:10.1029/2002RS002797
79 Schunk, R. W. (2002). Global assimilation of ionospheric measurements (GAIM). Paper presented at Ionospheric Effects Symposium, Office of Naval Research, Alexandria, VA.
80 Shim, J. S., et al. (2012). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 10, S10004. doi:10.1029/2012SW000851
81 Shim, J. S., Rastaetter, L., Kuznetsova, M. M., Kalafatoglu, E. C., & Zheng, Y. (2015). Assessment of the predictive capability of IT models at the Community Coordinated Modeling Center. Proceedings of the 2015 IES.
82 Solomon, S. C., & Qian, L. (2005). Solar extreme‐ultraviolet irradiance for general circulation models. Journal of Geophysical Research, 110, A10306. doi:10.1029/2005JA011160
83 Spiro, R. W., Reiff, P. H., & Maher, L. J. (1982). Precipitating electron energy flux and auroral zone conductances – an empirical model. Journal of Geophysical Research, 87, 8215.
84 Streltsov, A. V., & Lotko, W., (2003). Reflection and absorption of Alfvenic power in the low‐altitude magnetosphere. Journal of Geophysical Research, 108, A4, 8016. doi:10.1029/2002JA009425
85 Thayer, J. P., & Semeter, J. (2004). The convergence of magnetospheric energy flux in the polar atmosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 807–824.
86 Tobiska, W. K., et al. (2000). The SOLAR2000 empirical solar irradiance model and forecast tool. Journal of Atmospheric and Solar‐Terrestrial Physics, 62, 1233–1250. doi:10.1016/S1364‐6826(00)00070‐5
87 Toffoletto, F. R., Sazykin, S., Spiro, R. W., & Wolf, R. A. (2003). Modeling the inner magnetosphere using the Rice Convection Model (review). Space Science Reviews, WISER special issue, 107, 175– 196. doi:10.1023/A:1025532008047
88 Tóth, G., et al. (2005). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110 (A12), A12226. doi:10.1029/2005JA011126
89 Tóth, G., et al. (2012). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231, 3, 870– 903. doi:10.1016/j.jcp.2011.02.006
90 Tóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., & Peng, B. (2017). Scaling the ion inertial length and its implications for modeling reconnection in global simulations. Journal of Geophysical Research, 122. doi.org/10.1002/2017JA024189
91 Troshichev, O., Andersen, V. G., Vennerstrom, S., & Friis‐ChristensenvE. (1988). [title?] Planetary and Space Science, 36, 109
92 Tsurutani, B. T., GonzalezW. D., GonzalezA. L. C., Tang F., Arballo J. K., & Okada M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research, 100(A11), 21,717–21,733.
93 Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., & Sugiura, M. (1990). Interplanetary Alfven waves and auroral (substorm) activity: IMP 8. Journal of Geophysical Research, 95(A3), 2241–2252.
94 Urban, K. D., Gerrard, A. J., Lanzerotti, L. J., & Weatherwax, A. T. (2016). Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes. Journal of Geophysical Research, 121, 8475–8507. doi:10.1002/2016JA022567
95 Vasyliunas, V. M., & Song, P. (2005). Meaning of ionospheric Joule heating. Journal of Geophysical Research, 110, A02301. doi:10.1029/2004JA020615
96 Verkhoglyadova, O. P., Meng, X., Mannucci, A. J., & McGranaghan, R. M. (2018). Semianalytical estimation of energy deposition in the ionosphere by monochromatic Alfvén waves. Journal of Geophysical Research, 123. doi:10/1029/2017JA25097
97 Wallis, D. D., & Budzinski, E. E. (1981). Empirical models of height integrated conductivities. Journal of Geophysical Research, 86, 125–138.
98 Wang, W., Wiltberger, M., Burns, A. G., Solomon, S. C., Killeen, T. L., Maruyama, N., & Lyon, J. G. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Thermosphere‐ionosphere responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1425–1441,doi:10.1016/j.jastp.2004.04.008
99 Weimer, D. R. (1995). Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients. Journal of Geophysical Research, 100. doi:10.1029/95jA01755
100 Weimer, D. R. (2001). Maps of field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. Journal of Geophysical Research, 106, 12,889.
101 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110. doi:10.1029/2004JA010884
102 Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1411–1423. doi:10.1016/j.jastp.2004.03.026
103 Wolf, R. A., Harel, M., Spiro, R. W., Voigt, G.‐H., Reiff, P. H., & Chen, C. K. (1982). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87, 5949– 5962.
104 Wolfe, A., Lanzerotti, L., Maclennan, C., & Weatherwax, A. (1996). Large‐amplitude hydromagnetic waves on open geomagnetic field lines. Antarctic Journal of the United States, 31, 257– 259.
105 Zmuda, A. J., Armstrong, J. C., &