Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов
Читать онлайн книгу.M. and Giacalone, J. (2015, October). Energetic particles, tangential discontinuities, and solar flux tubes. Journal of Geophysical Research: Space Physics 120: 8281–8287. https://doi.org/10.1002/2015JA021632.
179 Neugebauer, M., Goldstein, B.E., McComas, D.J. et al. (1995, December). Ulysses observations of microstreams in the solar wind from coronal holes. Journal of Geophysical Research: Space Physics 100: 23389–23396. https://doi.org/10.1029/95JA02723.
180 Neugebauer, M., Ruzmaikin, A., & McComas, D. J. (1997, January). Wavelet analysis of the structure of microstreams in the polar solar wind. In S. R. Habbal (Ed.), Robotic exploration close to the sun: Scientific basis (Vol. 385, p. 41–46). doi: https://doi.org/10.1063/1.51765.
181 Neugebauer, M. and Snyder, C.W. (1962, December). Solar plasma experiment. Science 138: 1095–1097. https://doi.org/10.1126/science.138.3545.1095‐a.
182 Nicol, R.M., Chapman, S.C., and Dendy, R.O. (2009, October). Quantifying the anisotropy and solar cycle dependence of “1/f” solar wind fluctuations observed by advanced composition explorer. The Astrophysical Journal 703: 2138–2151. https://doi.org/10.1088/0004‐637X/703/2/2138.
183 Noci, G., Kohl, J.L., and Withbroe, G.L. (1987, April). Solar wind diagnostics from Doppler‐enhanced scattering. The Astrophysical Journal 315: 706–715. https://doi.org/10.1086/165172.
184 Ogilvie, K.W., Fitzenreiter, R., and Desch, M. (2000, December). Electrons in the low‐density solar wind. Journal of Geophysical Research: Space Physics 105: 27277–27288. https://doi.org/10.1029/2000JA000131.
185 Oran, R., van der Holst, B., Landi, E. et al. (2013, December). A global wave‐driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. The Astrophysical Journal 778: 176. https://doi.org/10.1088/0004‐637X/778/2/176.
186 Owens, M.J. and Forsyth, R.J. (2013). The heliospheric magnetic field. Living Reviews in Solar Physics 10.
187 Owens, M.J., Crooker, N.U., and Lockwood, M. (2013, May). Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers. Journal of Geophysical Research: Space Physics 118: 1868–1879. https://doi.org/10.1002/jgra.50259.
188 Owens, M. J., Wicks, R. T., & Horbury, T. S. (2011, April). Magnetic discontinuities in the near‐earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, 269, 411‐420. doi: https://doi.org/10.1007/s11207‐010‐9695‐0.
189 Parker, E.N. (1958, November). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal 128: 664. https://doi.org/10.1086/146579.
190 Perri, S., Goldstein, M.L., Dorelli, J.C., and Sahraoui, F. (2012, November). Detection of small‐scale structures in the dissipation regime of solar‐wind turbulence. Physical Review Letters 109 (19): 191101. https://doi.org/10.1103/ PhysRevLett.109.191101.
191 Perrone, D., Alexandrova, O., Mangeney, A. et al. (2016, August). Compressive coherent structures at ion scales in the slow solar wind. The Astrophysical Journal 826: 196. https://doi.org/10.3847/0004‐637X/826/2/196.
192 Perrone, D., Alexandrova, O., Roberts, O.W. et al. (2017, November). Coherent structures at ion scales in fast solar wind: Cluster observations. The Astrophysical Journal 849: 49. https://doi.org/10.3847/1538‐4357/aa9022.
193 Phan, T.D., Gosling, J.T., Davis, M.S. et al. (2006, January). A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind. Nature 439 (7073): 175–178. https://doi.org/10.1038/nature04393.
194 Pierrard, V. (2011, February). Solar wind electron transport: Interplanetary electric field and heat conduction. 172: 315–324. https://doi.org/10.1007/s11214‐011‐9743‐6.
195 Pierrard, V., & Lamy, H. (2003, September). The effects of the velocity filtration mechanism on the minor ions of the corona. Solar Physics, 216, 47–58. doi: 10.1023/ A:1026157306754.
196 Pierrard, V. and Lazar, M. (2010, November). Kappa distributions: Theory and applications in space plasmas. Solar Physics 267: 153–174. https://doi.org/10.1007/s11207‐010‐9640‐2.
197 Pierrard, V., Lazar, M., Poedts, S. et al. (2016, August). The electron temperature and anisotropy in the solar wind. comparison of the core and halo populations. Solar Physics 291: 2165–2179. https://doi.org/10.1007/s11207‐016‐0961‐7.
198 Pierrard, V., Lazar, M., and Schlickeiser, R. (2011, April). Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Solar Physics 269: 421–438. https://doi.org/10.1007/s11207‐010‐9700‐7.
199 Pierrard, V., Maksimovic, M., and Lemaire, J. (1999, August). Electron velocity distribution functions from the solar wind to the corona. Journal of Geophysical Research: Space Physics 104: 17021–17032. https://doi.org/10.1029/1999JA900169.
200 Pierrard, V. and Pieters, M. (2014, December). Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. Journal of Geophysical Research: Space Physics 119: 9441–9455. https://doi.org/10.1002/2014JA020678.
201 Pilipp, W.G., Miggenrieder, H., Montgomery, M.D. et al. (1987, February). Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. Journal of Geophysical Research: Space Physics 92: 1075–1092. https://doi.org/10.1029/JA092iA02p01075.
202 Pilipp, W.G., Muehlhaeuser, K.‐H., Miggenrieder, H. et al. (1990, May). Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. Journal of Geophysical Research: Space Physics 95: 6305–6329. https://doi.org/10.1029/JA095iA05p06305.
203 Pinto, R.F., Brun, A.S., Jouve, L., and Grappin, R. (2011, August). Coupling the solar dynamo and the corona: Wind properties, mass, and momentum losses during an activity cycle. The Astrophysical Journal 737: 72. https://doi.org/10.1088/0004‐637X/737/2/72.
204 Pinto, R. F., Brun, A. S., & Rouillard, A. P. (2016, August). Flux‐tube geometry and solar wind speed during an activity cycle. Astronomy & Astrophysics, 592, A65. Retrieved 2019‐03‐04, from https://www.aanda.org/articles/ aa/abs/2016/08/aa28599‐16/aa28599‐16.html doi: https://doi.org/10.1051/0004‐6361/ 201628599.
205 Pinto,