Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов
Читать онлайн книгу.Raouafi, Nour E., editor. | Vourlidas, Angelos, editor.
Title: Solar physics and solar wind / Nour E. Raouafi, Angelos Vourlidas, editors.
Description: Hoboken, NJ : Wiley, 2021. | Series: Geophysical monograph series | Includes bibliographical references and index.
Identifiers: LCCN 2020047581 | ISBN 9781119507536 (hardback) | ISBN 9781119815488 (adobe pdf) | ISBN9781119815471 (epub)
Subjects: LCSH: Sun. | Solar wind.
Classification: LCC QB521 .A88 2021 | DDC 523.7–dc23
LC record available at https://lccn.loc.gov/2020047581
Cover Design: Wiley
Cover Image: © NOAA National Environmental Satellite, Data, and Information Service (NESDIS)
LIST OF CONTRIBUTORS
Olga Alexandrova Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique Observatoire de Paris Université PSL CNRS Sorbonne Université Université de Paris Meudon, France
Alessandro Bemporad INAF Osservatorio Astrofisico di Torino Turin, Italy
Luca Bertello National Solar ObservatoryBoulder, Colorado, USA
Christina M. S. Cohen Space Radiation Laboratory California Institute of Technology Pasadena, California, USA
Serena Criscuoli National Solar Observatory Boulder, Colorado, USA
Mausumi Dikpati High Altitude Observatory Boulder, Colorado, USA
Cooper Downs Predictive Science Inc. San Diego, California, USA
Aleida K. Higginson NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Rachel Howe School of Physics and Astronomy University of Birmingham Birmingham, United Kingdom
James A. Klimchuk NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Michael Lavarra Institut de Recherche en Astrophysique et Planétologie Toulouse, France
Benoit Lavraud Laboratoire d’Astrophysique de BordeauxUniversité de BordeauxCNRS, B18N Pessac, France
Gang Li Department of Space Science University of Alabama in Huntsville Huntsville, Alabama, USA
Mark Linton Space Science Division Naval Research Laboratory Washington, D.C., USA
Noé Lugaz University of New Hampshire Durham, New Hampshire, USA
Glenn M. Mason Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA
Lorenzo Matteini Department of PhysicsImperial College LondonLondon, UK
Ineke De Moortel School of Mathematics and Statistics University of St Andrews St Andrews, United Kingdom; and Rosseland Centre for Solar Physics University of OsloNorway
Susanna Parenti Université Paris‐Saclay CNRSInstitut d’Astrophysique Spatiale Orsay, France
Gordon Petrie National Solar Observatory Boulder, Colorado, USA
Viviane Pierrard Belgian Institute for Space Aeronomy Brussels, Belgium
Rui Pinto Laboratoire Dynamique des Etoiles, des (Exo) planètes et de leur Environnement (LDE3) Astrophysics Division (DAp/AIM) Saclay Nuclear Research Centre (CEA Saclay) Gif‐sur‐Yvette, France; and Institut de Recherche en Astrophysique et Planétologie Toulouse, France
Jiong Qiu Montana State University Bozeman, Montana, USA
Nour E. Raouafi Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA
Fabio Reale Dipartimento di Fisica & Chimica Universitá di Palermo Palermo, Italy
Alexis P. Rouillard Institut de Recherche en Astrophysique et Planétologie Toulouse, France
Eduardo Sanchez‐Diaz Institut de Recherche en Astrophysique et Planétologie Toulouse, France
Albert Y. Shih NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Alphonse C. Sterling NASA Marshall Space Flight Center Huntsville, Alabama, USA
Barbara J. Thompson NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Nicholeen Viall NASA Goddard Space Flight Center Greenbelt, Maryland, USA
Christian Vocks Leibniz Institute for Astrophysics Potsdam Potsdam, Germany
Angelos Vourlidas Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA
Linghua Wang School of Earth and Space Sciences Peking University Beijing, China
David F. Webb Institute for Scientific Research Boston College Chestnut Hill, Massachusetts, USA
Yihong Wu Leibniz Institute for Astrophysics Potsdam Potsdam, Germany
PREFACE
The upcoming decade will mark a turning point in solar and heliospheric research. The spacecraft fleet comprising the Heliophysics Systems Observatory will be augmented by a set of unique space missions and ground‐based telescopes that will greatly expand our knowledge of the heliosphere. The Parker Solar Probe (PSP) was launched in August 2018, sixty years after it was conceived as humanity’s first mission to enter and study a stellar atmosphere from “within.” The PSP will approach closer to the Sun than any spacecraft before to explore the solar atmosphere as close as 8.86 solar radii above the surface. The PSP has completed 6 of its 24 scheduled orbits as of this writing. The data recorded during the first six orbits show an unprecedented view of the nascent solar wind. We expect more discoveries as the spacecraft flies ever closer to the Sun. The Solar Orbiter (SolO), launched in February 2020, will approach within 60 solar radii but from an orbit inclined by up to 34° out of the ecliptic. SolO will give us the first unprojected images of the solar poles and measure the magnetic fields in these regions. The largest ground‐based telescope ever built, the 4‐m Daniel K. Inouye Solar Telescope (DKIST), will be operational next year. The DKIST will reveal solar structures as small as 20–30 km in diameter. In the near future, the 4‐m European Solar Telescope (EST) will also become operational.
The observations and measurements from the PSP and SolO and those we will get from the DKIST, EST, and other future missions and telescopes will not only help answer long‐standing scientific questions but also lead to significant discoveries and open new avenues for exploration. These measurement capabilities will write a new chapter of space and solar physics. So, it is a good time now to take a look at the status of the solar and heliospheric research. This book presents seven chapters that cover most aspects of solar and heliospheric physics.
Important technological inventions, along with essential advances in mathematics and physical theories made over the last few centuries, led to fundamental solar and astronomical discoveries. These discoveries created new puzzles that form the main pillars and axes of solar and heliospheric research. The invention of the telescope and the discovery of sunspots by Galileo in the 16th century represent a turning point in solar physics research. Soon after, the 11‐year solar cycle was revealed