Introduction to Solid State Physics for Materials Engineers. Emil Zolotoyabko

Читать онлайн книгу.

Introduction to Solid State Physics for Materials Engineers - Emil Zolotoyabko


Скачать книгу
translational symmetry, which should be used instead of the momentum conservation law in a homogeneous medium. We remind that the latter law means 2πG = kfki = 0, i.e. kf = ki.

Schematic illustration of the sketch of a crystal plane, normal to the vector of reciprocal lattice, G, which contains the ends of vectors, rs, satisfying Eq. (1.29). Graphical interrelation between wavevectors of the incident (ki) and scattered (kf) waves and the vector of reciprocal lattice, G.

      (1.39)2 d sine upper Theta Subscript upper B Baseline equals lamda

      which provides the relationship between the possible directions for the diffracted wave propagation (via Bragg angles, ΘB) and inter-planar spacings (d-spacings), d, in crystals. We stress that if λ > 2d, Bragg diffraction is not possible.

      Note that for quasicrystals, the diffraction conditions (like Eq. (1.28)) can be deduced from the quasi-momentum (quasi-wavevector) conservation law in the n-dimensional space (hyperspace, n > 3), in which the vectors of reciprocal lattice, Gqc, are:

      (1.40)bold-italic upper G Superscript italic q c Baseline equals sigma-summation Underscript 1 Overscript n Endscripts h Subscript i Baseline bold-italic b Superscript italic q c Baseline Subscript i

      In case of icosahedral symmetry, n = 6, and the set of basis vectors has the following form:

      (1.41)bold-italic upper G Superscript italic q c Baseline equals upper G 0 sigma-summation Underscript 1 Overscript 6 Endscripts h Subscript i Baseline ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript i

Schematic illustration of the traces of isoenergetic surfaces in reciprocal space for the incident (ki) and diffracted (kf) waves. The point of degeneracy of quantum states is marked by the letter D. ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 1 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis 1 comma tau comma 0 right-parenthesis ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 2 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis tau comma 0 comma 1 right-parenthesis ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 3 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis tau comma 0 comma negative 1 right-parenthesis ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 4 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis 0 comma 1 comma negative tau right-parenthesis ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 5 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis negative 1 comma tau comma 0 right-parenthesis

      (1.42)ModifyingAbove bold-italic b With Ì‚ Superscript italic q c Baseline Subscript 6 Baseline equals StartFraction 1 Over 1 plus tau squared EndFraction left-parenthesis 0 comma 1 comma tau right-parenthesis