Естествознание. Базовый уровень. 10 класс. В. И. Сивоглазов
Читать онлайн книгу.применяться после изобретения вычислительных машин. Ведь, по существу, любая программа вычислений представляет собой алгоритм. Вот, например, простой алгоритм, который может быть выражен в виде компьютерной программы:
«Взять два числа – х и у, перемножить их, затем прибавить к произведению тройку и извлечь из получившейся суммы квадратный корень. Если значение корня окажется целым числом, выдать ответ, что введённые числа составляют пару для данной операции».
Такой алгоритм можно легко вычислить в уме. Нетрудно сообразить, что соответствующие этому условию пары составляют, например, числа 1 и 6; 2 и 3; 2 и 11 и бесконечное количество других.
Создание модели обычно включает определённые этапы. Вначале происходит словесное, качественное, «нематематическое» описание объекта или явления, которое предполагается моделировать. Затем это описание формулируется на языке математических формул. Это самый сложный этап построения модели. После этого создаются алгоритмы, по которым будут сделаны расчёты, затем производятся вычисления, а после полученные математические результаты интерпретируются, т. е. снова «переводятся» на обычный язык для того, чтобы понять, что именно получилось в результате работы математической модели. Если полученные результаты согласуются с реальностью, модель принимается за основу, а затем производится её доработка: в программу вводятся какие-то детали, не учтённые на первом этапе работы, или, наоборот, производятся некоторые упрощения, которые облегчают работу, но существенно не влияют на конечный результат.
Разумеется, модель всегда является упрощённым подобием реального объекта, так как какие-то детали всегда можно упустить из внимания или нарочно пренебречь для того, чтобы моделирование не оказалось чрезмерно сложным. Однако если основные особенности учтены и алгоритмы подобраны правильно, моделирование часто даёт поразительно точные результаты, позволяющие предсказывать ход природных процессов и рассчитывать работу сложных технических устройств. Бывает даже так, что в процессе моделирования выявляются результаты, неожиданные для её создателей, но абсолютно точно согласующиеся с реальностью.
В современном мире математическое моделирование находит широчайшее применение практически во всех областях человеческой деятельности – в электронной и космической технике, ядерной физике, экономике, социологии, экологии и сельском хозяйстве.
Рассмотрим широко известную в экологии модель, описывающую изменение численности двух видов, обитающих на данной территории: жертвы и хищника. Допустим, в определённой местности живут зайцы и лисы. Будем считать, что пища для зайцев имеется в избытке и поэтому они могут быстро размножаться в геометрической прогрессии. Следовательно, чем больше зайцев живёт в этом году, тем больше их родится в следующем. Так бы они и размножались бесконечно, если бы поблизости не обитали лисицы.
Эти