Wind Energy Handbook. Michael Barton Graham

Читать онлайн книгу.

Wind Energy Handbook - Michael Barton Graham


Скачать книгу
the same, but the low value is significantly lower in editions 3 and 4 than in edition 2.

Graph depicts the turbulence intensities according to various standards.

      2.6.4 Turbulence spectra

      The spectrum of turbulence describes the frequency content of wind speed variations. According to the Kolmogorov law, the spectrum must approach an asymptotic limit proportional to n−5/3 at high frequency (here n denotes the frequency, in Hz). This relationship is based on the decay of turbulent eddies to higher and higher frequencies as turbulent energy is dissipated as heat.

      Two alternative expressions for the spectrum of the longitudinal component of turbulence are commonly used, both tending to this asymptotic limit. These are the Kaimal and the von Karman spectra, which take the following forms:

      Kaimal:

      von Karman:

      (2.25)StartFraction italic n upper S Subscript u Baseline left-parenthesis n right-parenthesis Over sigma Subscript u Superscript 2 Baseline EndFraction equals StartFraction 4 italic n upper L Subscript 2 u Baseline slash upper U overbar Over left-parenthesis 1 plus 70.8 left-parenthesis italic n upper L Subscript 2 u Baseline slash upper U overbar right-parenthesis squared right-parenthesis Superscript 5 slash 6 Baseline EndFraction

      where Su(n) is the autospectral density function for the longitudinal component and L1u and L2u are length scales. For these two forms to have the same high frequency asymptotic limit, these length scales must be related by the ratio (36/70.8)−5/4, i.e. L1u = 2.329 L2u. The appropriate length scales to use are discussed in the next section.

Graph depicts the comparison of spectra at 12 m/s.

      All three of these spectra have corresponding expressions for the lateral and vertical components of turbulence. The Kaimal spectra have the same form as for the longitudinal component but with different length scales, L1v and L1w, respectively. The von Karman spectrum for the i component (i = v or w) is

      (2.27)StartFraction n upper S Subscript i Baseline left-parenthesis n right-parenthesis Over sigma Subscript i Superscript 2 Baseline EndFraction equals StartFraction 4 left-parenthesis n upper L Subscript 2 i Baseline slash upper U overbar right-parenthesis left-parenthesis 1 plus 755.2 left-parenthesis n upper L Subscript 2 i Baseline slash upper U overbar right-parenthesis squared right-parenthesis Over left-parenthesis 1 plus 283.2 left-parenthesis n upper L Subscript 2 i Baseline slash upper U overbar right-parenthesis squared right-parenthesis Superscript 11 slash 6 Baseline EndFraction

Graph depicts the comparison of spectra at 25 m/s.

      (2.28)StartFraction n upper S Subscript i Baseline left-parenthesis n right-parenthesis Over sigma Subscript i Superscript 2 Baseline EndFraction equals beta 1 StartFraction 2.987 left-parenthesis n upper L Subscript 3 i Baseline slash upper U overbar right-parenthesis left-parenthesis 1 plus eight thirds left-parenthesis 4 pi n upper L Subscript 3 i Baseline slash upper U overbar right-parenthesis squared right-parenthesis Over left-parenthesis 1 plus left-parenthesis 4 pi n upper L Subscript 3 i Baseline slash upper U overbar right-parenthesis squared right-parenthesis Superscript 11 slash 6 Baseline EndFraction plus beta 2 StartFraction 1.294 n upper L Subscript 3 i Baseline slash upper U overbar Over left-parenthesis 1 plus left-parenthesis 2 pi n upper L Subscript 3 i Baseline slash upper U overbar right-parenthesis <hr><noindex><a href=Скачать книгу