Electromagnetic Metasurfaces. Christophe Caloz

Читать онлайн книгу.

Electromagnetic Metasurfaces - Christophe Caloz


Скачать книгу
equals StartFraction 1 Over pi EndFraction PV integral Subscript negative infinity Superscript plus infinity Baseline StartFraction chi Subscript v comma r Baseline left-parenthesis omega Superscript prime Baseline right-parenthesis Over omega minus omega Superscript prime Baseline EndFraction normal d omega Superscript prime Baseline period"/>

      Following a similar procedure with a time-asymmetric script upper A left-parenthesis t right-parenthesis function, i.e. script upper A left-parenthesis t right-parenthesis equals minus script upper A left-parenthesis negative t right-parenthesis, corresponding to a purely imaginary upper A left-parenthesis omega right-parenthesis, we obtain

      

      2.2.2 Lorentz Oscillator Model

      The Lorentz oscillator is a simple classical atomic model that describes the interaction of a time-harmonic field with matter. It was initially developed to describe the resonant behavior of an electron cloud. This model has been widely used to describe the temporal-frequency dispersive nature of materials and their related frequency-dependent refractive index [140]. It turns out to be also particularly useful in describing the responses of metamaterials, as they are generally made of resonant scattering particles.

      Let us consider that an electron cloud is subjected to the Lorentz electric force,

      (2.15)bold-script upper F Subscript normal e Baseline left-parenthesis bold r comma t right-parenthesis equals minus q Subscript normal e Baseline bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis comma

      where q Subscript normal e is the electric charge and bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis is the local field.4 We assume here that the magnetic force is negligible compared to the electric force, which is the case for nonrelativistic velocities, and that the nuclei, which are much heavier than the electrons, are not moving. The restoring force between the nuclei and the electrons can be expressed similarly to the force of a mass attached to a spring, i.e.

      where m Subscript normal e is the mass of the electron cloud, omega Subscript normal r is a constant analogous to the stiffness of the spring, and bold d left-parenthesis bold r comma t right-parenthesis is the displacement from equilibrium of the electron cloud. Finally, to model dissipation, we introduce the frictional force

      (2.17)bold-script upper F Subscript normal f Baseline left-parenthesis bold r comma t right-parenthesis equals minus 2 normal upper Gamma m Subscript normal e Baseline bold v left-parenthesis bold r comma t right-parenthesis comma

      where bold v left-parenthesis bold r comma t right-parenthesis is the displacement velocity of the electron cloud and normal upper Gamma is a constant representing the friction coefficient. Applying Newton's second law with these three forces, we obtain

      (2.18)m Subscript normal e Baseline StartFraction partial-differential Over partial-differential t EndFraction bold v left-parenthesis bold r comma t right-parenthesis equals minus q Subscript normal e Baseline bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis minus m Subscript normal e Baseline omega Subscript normal r Superscript 2 Baseline bold d left-parenthesis bold r comma t right-parenthesis minus 2 normal upper Gamma m Subscript normal e Baseline bold v left-parenthesis bold r comma t right-parenthesis period

      Rearranging the terms and noting that bold v left-parenthesis bold r comma t right-parenthesis equals partial-differential bold d left-parenthesis bold r comma t right-parenthesis slash partial-differential t, we get