Geochemistry. Группа авторов
Читать онлайн книгу.Bloise, A., Barca, D., Gualtieri, A.F., Pollastri, S., Belluso, E., Trace elements in hazardous mineral fibres. Environ. Pollut., 216, 314–323, 2016a.
22. Bloise, A., Punturo, R., Catalano, M., Miriello, D., Cirrincione, R., Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Ital. J. Geosci., 135, 2, 268–279, 2016b.
23. Gualtieri, A.F., Lusvardi, G., Zoboli, A., Di Giuseppe, D., Gualtieri, M.L., Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environ. Res., 171, 550–557, 2019.
24. Holmes, E.P., Wilson, J., Schreier, H., Lavkulich, L.M., Processes affecting surface and chemical properties of chrysotile: Implications for reclamation of asbestos in the natural environment. Can. J. Soil Sci., 92, 1, 229–242, 2012.
25. Holmes, E.P. and Lavkulich, L.M., The effects of naturally occurring acids on the surface properties of chrysotile asbestos. J. Environ. Sci. Health, Part A, 49, 12, 1445–1452, 2014.
26. Bales, R.C., Surface chemical and physical behavior of chrysotile asbestos in natural waters and water treatment, Keck Laboratories of Environmental Engineering Science, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA. Report No. AC-8-84, 1984.
27. Bangira, C., Deng, Y., Loeppert, R.H., Hallmark, C.T., Stucki, J.W., Soil mineral composition in contrasting climatic regions of the Great Dyke, Zimbabwe. Soil Sci. Soc. Am. J., 75, 6, 2367–2378, 2011.
28. Shallari, S., Schwartz, C., Hasko, A., Morel, J.L., Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci. Total Environ., 209, 2–3, 133–142, 1998.
29. Vengosh, A., Coyte, R., Karr, J., Harkness, J.S., Kondash, A.J., Ruhl, L.S., Merola, R.B., Dywer, G.S., Origin of hexavalent chromium in drinking water wells from the piedmont aquifers of North Carolina. Environ. Sci. Technol. Lett., 3, 12, 409–414, 2016.
30. Namgung, S., Kwon, M.J., Qafoku, N.P., Lee, G., Cr(OH)3(s) oxidation induced by surface catalyzed Mn (II) oxidation. Environ. Sci. Technol., 48, 18, 10760–10768, 2014.
31. Dotaniya, M.L. and Meena, V.D., Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci., 85, 1, 1–12, 2015.
32. Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., Harvey, J., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15820’N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chem. Geol., 234, 179–210, 2006.
33. Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S., Gméling, K., Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol., 53, 2, 235–270, 2011.
34. Scambelluri, M., Rampone, E., Piccardo, G.B., Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro–Tobbio high-pressure ultramafites (Western alps, NW Italy). J. Petrol., 42, 1, 55–67, 2001.
35. Paulick, H. and Machacek, E., The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives. Res. Policy, 52, 134–153, https://doi.org/10.1016/j.resourpol.2017.02.002, 2017.
36. WHO (World Health Organization), Chrysotile asbestos, World Health Organization, Geneva, 2014.
37. Davies, T.C. and Mundalamo, H.R., Environmental health impacts of dispersed mineralisation in South Africa. J. Afr. Earth Sci., 58, 4, 652–666, 2010.
38. Camargo, M.C., Stayner, L.T., Straif, K., Reina, M., Al-Alem, U., Demers, P.A., Landrigan, P.J., Occupational exposure to asbestos and ovarian cancer: a meta-analysis. Environ. Health Perspect., 119, 9, 1211–1217, 2011.
39. Hendrickx, M., Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environ. Geol., 57, 4, 909–926, 2009.
40. Braun, L. and Kisting, S., Asbestos-related disease in South Africa: the social production of an invisible epidemic. Am. J. Public Health, 96, 8, 1386–1396, 2006.
41. Cullen, M.R. and Baloyi, R.S., Chrysotile asbestos and health in Zimbabwe: I. Analysis of miners and millers compensated for asbestos-related diseases since independence (1980). Am. J. Ind. Med., 19, 2, 161–169, 1991.
42. Cullen, M.R., Lopez-Carrillo, L., Alli, B., Pace, P.E., Shalat, S.L., Baloyi, R.S., Chrysotile asbestos and health in Zimbabwe: II. Health status survey of active miners and millers. Am. J. Ind. Med., 19, 2, 171–182, 1991.
43. Miller, J.D., Collins, S.M., Omotayo, M., Martin, S.L., Dickin, K.L., Young, S.L., Geophagic earths consumed by women in western Kenya contain dangerous levels of lead, arsenic, and iron. Am. J. Hum. Biol., 30, 4, e23130, 2018.
44. Odongo, A.O., Moturi, W.N., Mbuthia, E.K., Heavy metals and parasitic geohelminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya. Environ. Geochem. Health, 38, 1, 123–131, 2016.
45. Young, S.L., Sherman, P.W., Lucks, J.B., Pelto, G.H., Why on earth?: Evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol., 86, 2, 97–120, 2011.
46. Toft, P., Wigle, D., Meranger, J.C., Mao, Y., Asbestos and drinking water in Canada. Sci. Total Environ., 18, 77–89, 1981.
47. Bales, R.C. and Morgan, J.J., Dissolution kinetics of chrysotile at pH 7 to 10. Geochim. Cosmochim. Acta, 49, 11, 2281–2288, 1985a.
48. Bales, R.C. and Morgan, J.J., Surface charge and adsorption properties of chrysotile asbestos in natural waters. Environ. Sci. Technol., 19, 12, 1213–1219, 1985b.
49. WHO (World Health Organization), Chromium in drinking water. Background document for preparation of WHO guidelines for drinking water quality, World Health Organization, Geneva, 2003.
50. Chrysochoou, M., Theologou, E., Bompoti, N., Dermatas, D., Panagiotakis, I., Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr. Pollut. Rep., 2, 4, 224–235, https://doi.org/10.1007/s40726-016-0044-2, 2016.
51. McClain, C.N. and Maher, K., Chromium fluxes and speciation in ultramafic catchments and global rivers. Chem. Geol., 426, 135–57, 2016.
52. Binda, G., Pozzi, A., Livio, F., Piasini, P., Zhang, C., Anomalously high concentration of Ni as sulphide phase in sediment and in water of a mountain catchment with serpentinite bedrock. J. Geochem. Explor., 190, 58–68, 2018.
53. Pavlova, D., Karadjova, I., Krasteva, I., Essential and toxic element concentrations in Hypericum perforatum. Aust. J. Bot., 63, 2, 152–158, 2015.
54. Street, R.A., Heavy metals in medicinal plant products - An African perspective. S. Afr. J. Bot., 82, 67–74, 2012.
55. Aloupi, M., Koutrotsios, G., Koulousaris, M., Kalogeropoulos, N., Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol. Environ. Saf., 78, 184–194, 2012.
56. Nharingo, T., Ndumo, T., Moyo, M., Human health risks due to heavy metals through consumption of wild mushrooms from Macheke forest, Rail Block forest and Muganyi communal lands in Zimbabwe. Environ. Monit. Assess., 187, 738, 1–11, 2015.
57. Atanassova, J., Pavlova, D., Lazarova, M., Yurukova, L., Characteristics of honey from serpentine area in the Eastern Rhodopes Mt., Bulgaria. Biol. Trace Elem. Res., 173, 1, 247–258, 2016.
58. Salihaj, M. and Bani, A., The nickel content in honey derived from serpentine and non-serpentine