Liquid Biofuels. Группа авторов
Читать онлайн книгу.26: 361-375, 2004.
7. Ljungdahl, L.G., Eriksson, K.E., Ecology of microbial cellulose degradation, Adv. Microbiology Ecology, 8, 237-299, 1985.
8. Valenzuela, M.B., Jones, C.W., Agrawal, P.K., Batch Aqueous-Phase Reforming of Woody Biomass, Energy Fuels, 20, 1744–1752, 2006.
9. Beguin, P., Aubert, J.P., The biological degradation of cellulose, FEMS Microbiological Reviews, 13, 25–58, 1994.
10. Kim, J., Lee, H.W., Lee, S.M., Jae, J., Park, Y., Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresource Technology, 279, 373-384, 2019.
11. Fengel, D., Wegener, G., Wood Chemistry, Ultrasturucture, Reactions, pp. 482-520, Walter De Gruyter, Verlag, 1984.
12. Sjostrom, E., Wood Chemistry: Fundamentals and Application, pp. 204-222, Academic Press, 1993.
13. Eriksson, K.E., Blanchette, R.A., Ander, P., Microbial and enzymatic dagradation of wood and wood components, pp. 225-333. Springer-Verlag KG, 1990.
14. Naidu, D.S., Hlangothi, S.P., John, M.J., Bio-Based Products from Xylan: A Review, Carbonhydrate Polymers, 179, 28-41, 2018.
15. Johansson, E., Krantz-Rultcker, C., Zhang, B. X., Chlorination and biodegradation of lignin, Soil Biology & Biochemistry, 1029-1032, 1999.
16. Nugzar, N.N., Sarkanen, S., Concescutive polymerization and depolymerization of kraft lignin by trametes cingulata, Phytochemistry, 49, 1203-1212, 1997.
17. Demirbaş, A., Biofuels, Securing the Planet’s Future Energy Needs, Energy Conversion and Management, 50, 9, 2239-2249, 2009.
18. Saha, B.C., Hemicellulose Bioconversion, Journal of Industrial Microbiology and Biotechnology, 30, 279-291, 2003.
19. McMillan, J.D., Pretreatment of Lignocellulosic Biomass, in: Enzymatic Conversion o Biomass for Fuel Production, Himmel, M. E., Baker, J. O., Overend, R. P. (Ed.), pp. 292-323, American Chemical Society, 1993.
20. Aspinall, G.O., Chemistry of Cell Wall Polysaccharides, in: The Biochemistry of Plants (A Comprehensive Treatise), 473–500, 3, Carbohydrates: Structure And Function, Academic Press, 1980.
21. Shibuya, N., Iwasaki, T., Structural Features of Rice Bran Hemicellulose, Phytochemistry, 24, 285-289, 1985.
22. Strayer, R.F., Figer, B.W., Alazrki, M.P., Cook, K., Garland, J.L., Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor, Bioresource Technology, 84, 2, 119-127, 2002.
23. Guiraud, P., Steiman, R., Ait-Laydi, L., Murandi, F.S., Degradation of phenolic and chloroaromatic compounds by coprinus spp, Chemosphere, 38, 2775-2789, 1998.
24. Martins, M.A.M., Ferreira, I.C., Santos, I.M., Queiroz, M.J., Lima, N., Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium, Journal of Biotechnology, 89, 91-98, 2002.
25. Higuchi, T., The Discovery of Lignin, in: Discoveries in Plant Biology, S.D.Kung, S.F. Yang (Ed.), pp. 233, World Scientific Pub., Singapore, 1998.
26. Ek, M., Gellerstedt, G., Henriksson, G., Wood Chemistry and Wood Biotechnology, pp. 308-350, Walter de Gruyter GmbH & Co. KG, 2009.
27. Erbil, N., Coruk, G., Dıĝrak, M., 2006. Kahraman Maraş Civarındaki Ekstrem Ortamlardan İzole Edilen Bakterilerde Lignin Biyodegredasyonunun Araştırılması, Science and Engineering Journal of Fırat University, 18, 4, 485-492, 2006.
28. Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., Dastjerdi, B., Lignocellulose biomass pyrolysis for bio oil production: A review of biomass pretreatment methods for proection of drop in fuels, Renewable and Sustainable Energy Reviews, 123, 109763, 2020.
29. Nunes, L.J.R., Cause, T.P., Ciolkosz, D., Biomass for energy: A review on supply chain management models, Renewable and Sustainable Energy Reviews, 120, 109658, 2020.
30. Feng, Y., Tao. L., Zheng, Z., Huang, H., Lin, F., Upgranding agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism, Energy Storage Materials, Available online June 2020.
31. Li, Z., Guo, D., Liu, Y., Wang, H., Wang, L., Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors, Chemical Engineering Journal, 397, 125418, 2020.
32. Rodriguez, M., Camacho, J.A., The development of trade of biomass in Spain: A raw material equivalent approach, Biomass and Bioenergy, 133, 105450, 2020.
33. Greetham, D., Zaky, A., Makanjuola, O., Du, C., A brief review on bioethanol production using marine biomass, marine microorganism and seawater, Current Opinion in Green and Sustainable Chemistry, 14, 53-59, 2018.
34. Bar-On, Y.M., Milo, R., The Biomass Composition of the Oceans: A Blueprint of Our Blue Planet, Cell, 179, 1451-1454, 2019.
35. Ruiz, H.A., Rodriguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Hydrothermal processing, as an alternative for upgrading agriculture residue and marine biomass according to the biorefinery concept: A review, Renewable and Sustainable Energy Reviews, 21, 35-51, 2013.
36. Lee, M., Lin, Y., Chiuesh, P., Den, W., Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems, Journal of Cleaner Productions, 251, 119714, 2020.
37. Hiloidhari, M., Das, D., Baruah, D.C., Bioenergy potential from crop residue biomass in India, Renewable and Sustainable Energy Reviews, 32, 504-512, 2014.
38. Pandiyan, K., Singh, A., Singh, S., Saxena, A.K., Nain, L., Technological interventions for utilization of crop residues and weedy biomass for second generation bioethanol production, Renewable Energy, 132, 732-741, 2019.
39. Zubair, M., Wang, S., Zhang, P., Ye, J., Liang, J., Nabi, M., Zhou, Z., Tao, X., Chen, N., Sun, K., Xiao, J., Cai, Y., Biological nutrient removal and recovery from solid and liquid manure: Recent advance and perspective, Bioresource Technology, 301, 122823, 2020.
40. Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P., Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews, 79, 308-322, 2017.
41. Ramos-Suarez, J.L., Ritter, A., Gonzalez, J.M., Perez, A.C., Biogas from animal manure: A sustainable energy opportunity in the Canary Islands, Renewable and Sustainable Energy Reviews, 104, 137-150, 2019.
42. Kalembkiewicz, J., Chmielarz, U., Ashes from co-combustion of coal and biomass: New industrial wastes, Resources, Conservation and Recycling, 69, 109-121, 2012.
43. Chong, M., Sabaratnam, V., Shirai, Y., Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy, 34, 8, 3277-3287, 2009.
44. Elliott, D.C., Thermochemical Processing of Biomass: Conversion into Fuels, pp. 200-231, John Wiley & Sons Ltd, 2011.
45. Yokoyama, S., Matsumura, Y., The Asian Biomass Handbook, pp. 21-135, The Japan Institute of Energy, 2008.
46. Ibarra-Gonzalez, P., Rong, B., A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chinese Journal of Chemical Engineering, 27, 7, 1523-1535, 2019.
47. Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., Sommariva, S., Chemical Kinetics of Biomass Pyrolysis, Energy & Fuels, 22, 4292-430, 2008.
48. Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., Biofuel production through micro and macroalgae pyrolysis - A review of pyrolysis methods and process parameters,