Finite Element Analysis. Barna Szabó

Читать онлайн книгу.

Finite Element Analysis - Barna Szabó


Скачать книгу
3rd Column c 43 Superscript left-parenthesis 3 right-parenthesis 4th Column c 44 Superscript left-parenthesis 3 right-parenthesis EndMatrix EndLayout EndLayout"/>

      where the elements within the brackets are in the local numbering system whereas the coefficients aj and bi outside of the brackets are in the global system. The superscripts indicate the element numbers. The terms multiplied by a Subscript j Baseline b Subscript i are summed to obtain the elements of the assembled coefficient matrix which will be denoted by c Subscript i j. For example,

c 11 equals c 11 Superscript left-parenthesis 1 right-parenthesis Baseline comma c 22 equals c 22 Superscript left-parenthesis 1 right-parenthesis Baseline plus c 11 Superscript left-parenthesis 2 right-parenthesis Baseline comma c 33 equals c 22 Superscript left-parenthesis 2 right-parenthesis Baseline plus c 11 Superscript left-parenthesis 3 right-parenthesis Baseline comma c 77 equals c 44 Superscript left-parenthesis 3 right-parenthesis Baseline period

      Assuming that the boundary conditions do not include Dirichlet conditions, the bilinear form can be written in terms of the 7 times 7 coefficient matrix as:

      (1.76)StartLayout 1st Row 1st Column upper B left-parenthesis u Subscript n Baseline comma v Subscript n Baseline right-parenthesis equals 2nd Column sigma-summation Underscript j equals 1 Overscript 7 Endscripts sigma-summation Underscript i equals 1 Overscript 7 Endscripts c Subscript i j Baseline a Subscript j Baseline b Subscript i Baseline equals left-brace b 1 b 2 midline-horizontal-ellipsis b 7 right-brace Start 4 By 4 Matrix 1st Row 1st Column c 11 2nd Column c 12 3rd Column midline-horizontal-ellipsis 4th Column c 17 2nd Row 1st Column c 21 2nd Column c 22 3rd Column Blank 4th Column c 27 3rd Row 1st Column vertical-ellipsis 2nd Column Blank 3rd Column Blank 4th Column vertical-ellipsis 4th Row 1st Column c 71 2nd Column c 72 3rd Column midline-horizontal-ellipsis 4th Column c 77 EndMatrix Start 4 By 1 Matrix 1st Row a 1 2nd Row a 2 3rd Row vertical-ellipsis 4th Row a 7 EndMatrix 2nd Row 1st Column identical-to 2nd Column StartSet b EndSet Superscript upper T Baseline left-bracket upper C right-bracket StartSet a EndSet period EndLayout

      The treatment of Dirichlet conditions will be discussed separately in the next section.

      The assembly of the right hand side vector from the element‐level right hand side vectors is analogous to the procedure just described. Referring to eq. (1.73) we write upper F left-parenthesis v Subscript n Baseline right-parenthesis in the following form:

StartLayout 1st Row 1st Column upper F left-parenthesis v Subscript n Baseline right-parenthesis equals 2nd Column left-brace b 1 b 2 b 5 right-brace Start 3 By 1 Matrix 1st Row r 1 Superscript left-parenthesis 1 right-parenthesis 2nd Row r 2 Superscript left-parenthesis 1 right-parenthesis 3rd Row r 3 Superscript left-parenthesis 1 right-parenthesis EndMatrix plus left-brace b 2 b 3 right-brace StartBinomialOrMatrix r 1 Superscript left-parenthesis 2 right-parenthesis Choose r 2 Superscript left-parenthesis 2 right-parenthesis EndBinomialOrMatrix plus left-brace b 3 b 4 b 6 b 7 right-brace Start 4 By 1 Matrix 1st Row r 1 Superscript left-parenthesis 3 right-parenthesis 2nd Row r 2 Superscript left-parenthesis 3 right-parenthesis 3rd Row r 3 Superscript left-parenthesis 3 right-parenthesis 4th Row r 4 Superscript left-parenthesis 3 right-parenthesis EndMatrix 2nd Row 1st Column equals 2nd Column left-brace b 1 b 2 midline-horizontal-ellipsis b 7 right-brace Start 4 By 1 Matrix 1st Row r 1 2nd Row r 2 3rd Row vertical-ellipsis 4th Row r 7 EndMatrix identical-to StartSet b EndSet Superscript upper T Baseline StartSet r EndSet EndLayout

      where r 1 equals r 1 Superscript left-parenthesis 1 right-parenthesis, r 2 equals r 2 Superscript left-parenthesis 1 right-parenthesis Baseline plus r 1 Superscript left-parenthesis 2 right-parenthesis, r 3 equals r 2 Superscript left-parenthesis 2 right-parenthesis Baseline plus r 1 Superscript left-parenthesis 3 right-parenthesis, etc.

      1.3.6 Condensation

      Each element has p minus 1 internal basis functions. Those elements of the coefficient matrix which are associated with the internal basis functions can be eliminated at the element level. This process is called condensation.

      Let us partition the coefficient matrix and right hand side vector of a finite element with p greater-than-or-equal-to 2 such that

Start 2 By 2 Matrix 1st Row 1st Column bold upper C 11 2nd Column bold upper C 12 2nd Row 1st Column bold upper C 21 2nd Column bold upper C 22 EndMatrix StartBinomialOrMatrix bold a 1 Choose bold a 2 EndBinomialOrMatrix equals StartBinomialOrMatrix bold r 1 Choose bold r 2 EndBinomialOrMatrix

      where the bold a 1 equals left-brace a 1 a 2 right-brace Superscript upper T and bold a 2 equals left-brace a 3 a 4 midline-horizontal-ellipsis a Subscript p plus 1 Baseline right-brace Superscript upper T. The coefficient matrix is symmetric therefore bold upper C 21 equals bold upper C 12 Superscript upper T. Using

      we get

      (1.78)ModifyingBelow left-parenthesis bold upper C 11 minus bold upper C 12 bold upper C 22 Superscript negative 1 Baseline bold upper C 21 right-parenthesis With presentation form for vertical right-brace Underscript Condensed left-bracket upper C right-bracket Endscripts bold a 1 equals ModifyingBelow bold r 1 minus bold upper C 12 bold upper C 22 Superscript negative 1 Baseline bold r 2 With presentation form for vertical right-brace Underscript Condensed StartSet r EndSet Endscripts period

      1.3.7 Enforcement of Dirichlet boundary conditions

      When Dirichlet conditions are specified on either or both boundary points then u element-of ModifyingAbove upper S With tilde left-parenthesis upper I right-parenthesis is split into two functions; a function u overbar element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis and an arbitrary specific function from Скачать книгу