Polysaccharides. Группа авторов
Читать онлайн книгу.hydrogel films as bio-interactive dressings for wound healing. Biomaterials, 23, 17, 3661–71, 2002.
99. Cherng, J.-H., The Strategies of Natural Polysaccharide in Wound Healing, in: Wound Healing— Current Perspectives, 2019.
100. Yin, M., Zhang, Y., Li, H., Advances in research on immunoregulation of macrophages by plant polysaccharides. Front. Immunol., 10, 145, 2019.
101. Aduba, D.C. and Yang, H., Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering, 4, 1, 1, 2017.
102. Weiser, J.N., Roche, A.M., Hergott, C.B., LaRose, M.I., Connolly, T., Jorgensen, W.L., Leng, L., Bucala, R., Das, R., Macrophage Migration Inhibitory Factor Is Detrimental in Pneumococcal Pneumonia and a Target for Therapeutic Immunomodulation. J. Infect. Dis., 212, 10, 1667–82, 2015.
103. Schepetkin, I.A. and Quinn, M.T., Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 6, 3, 317–33, 2006.
104. Sun, L. and Zhao, Y., The biological role of dectin-1 in immune response. Int. Rev. Immunol., 26, 5–6, 349–64, 2007.
105. Martins, P.R., de Campos Soares, Â.M.V., da Silva Pinto Domeneghini, A.V., Golim, M.A., Kaneno, R., Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J. Venom. Anim. Toxins Incl. Trop. Dis., 23, 17, 2017.
106. Dockery, G.D. and Crawford, M.E., Lower Extremity Soft Tissue & Cutaneous Plastic Surgery, Second edition, W.B. Saunders Co Ltd, England, 2012.
107. Aderibigbe, B.A. and Buyana, B., Alginate in wound dressings. Pharmaceutics, 10, 2, 42, 2018.
108. Farrar, D., Advanced wound repair therapies, Elsevier Science & Technology, Woodhead Publishing Ltd, Cambridge, United Kingdom, 2011.
109. Wang, C.H., Chang, S.J., Tzeng, Y.S., Shih, Y.J., Adrienne, C., Chen, S.G., Chen, T.M., Dai, N.T., Cherng, J.H., Enhanced wound-healing performance of a phyto-polysaccharide-enriched dressing—A preclinical small and large animal study. Int. Wound J., 14, 6, 1359–1369, 2017.
110. Eaglstein, W.H., Moist wound healing with occlusive dressings: A clinical focus. Dermatol. Surg., 27, 2, 175–81, 2001.
111. Paul, W. and Sharma, C.P., Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomater. Artif. Organs, 18, 1, 18–23, 2004.
112. Xing, N., Tian, F., Yang, J., Li, Y., II.Characterizations of alginate-chitosan hydrogel for wound dressing application. Adv. Mater. Res., 490–495, 3124–3128, 2012.
113. Devi, M.P., Sekar, M., Chamundeswari, M., Moorthy, A., Krithiga, G., Murugan, N.S., Sastry, T.P., A novel wound dressing material—Fibrin–chitosan–sodium alginate composite sheet. Bull. Mater. Sci., 35, 1157–1163, 2012.
114. Madgulkar, A.R., Rao, M.R.P., Warrier, D., Characterization of psyllium (Plantago ovata) polysaccharide and its uses, in: Polysaccharides: Bioactivity and Biotechnology, 2015.
115. Westerhof, W., Das, P.K., Middelkoop, E., Verschoor, J., Storey, L., Regnier, C., Mucopolysaccharides from psyllium involved in wound healing. Drugs Exp. Clin. Res., 27, 5–6, 165–75, 2001.
116. Patil, B.S., Mastiholimath, V.S., Kulkarni, A.R., Development and evaluation of psyllium seed husk polysaccharide based wound dressing films. Orient. Pharm. Exp. Med., 11, 2, 123–129, 2011.
117. Fernandes, C., Acharya, P.C., Bhatt, S., Preparation of Lauroyl Grafted Alginate-Psyllium Husk Gel Composite Film with Enhanced Physicochemical, Mechanical and Antimicrobial Properties. Sci. Rep., 8, 1, 17213, 2018.
118. Ponrasu, T., Veerasubramanian, P.K., Kannan, R., Gopika, S., Suguna, L., Muthuvijayan, V., Morin incorporated polysaccharide-protein (psyllium-keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Adv., 8, 2305–14, 2018.
119. Rahman, M.M. and Netravali, A.N., Aligned Bacterial Cellulose Arrays as “green” Nanofibers for Composite Materials. ACS Macro Lett., 5, 9, 1070, 2016.
120. Liu, M., Li, S., Xie, Y., Jia, S., Hou, Y., Zou, Y., Zhong, C., Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl. Microbiol. Biotechnol., 102, 3, 1155–1165, 2018.
121. Aboelnaga, A., Elmasry, M., Adly, O.A., Elbadawy, M.A., Abbas, A.H., Abdelrahman, I., Salah, O., Steinvall, I., Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns, 44, 8, 1982– 1988, 2018.
122. Grassi, M., Grassi, G., Lapasin, R., Colombo, I., Understanding drug release and absorption mechanisms: A physical and mathematical approach, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2006.
123. Ganguly, K., Chaturvedi, K., More, U.A., Nadagouda, M.N., Aminabhavi, T.M., Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release, 193, 162–73, 2014.
124. Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, S., Huang, J., Chen, Z., Li, H., Yang, L., Lai, Y., Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces, 6, 17, 1900761, 2019.
125. Gopinath, V., Saravanan, S., Al-Maleki, A.R., Ramesh, M., Vadivelu, J., A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 107, 96–108, 2018.
126. Wang, H., He, J., Zhang, M., Tam, K.C., Ni, P., A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym. Chem., 6, 4206–4209, 2015.
127. Auzenne, E., Ghosh, S.C., Khodadadian, M., Rivera, B., Farquhar, D., Price, R.E., Ravoori, M., Kundra, V., Freedman, R.S., Klostergaard, J., Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia, 9, 6, 479–486, 2007.
128. Giannuzzo, M., Feeney, M., Paolicelli, P., Casadei, M.A., Synthesis and characterization of pH-sensitive hydrogels of dextran. J. Drug Deliv. Sci. Technol., 16, 1, 49–54, 2006.
129. Milivojevic, M., Pajic-Lijakovic, I., Bugarski, B., Nayak, A.K., Hasnain, M.S., Gellan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.
130. D’Arrigo, G., Di Meo, C., Gaucci, E., Chichiarelli, S., Coviello, T., Capitani, D., Alhaique, F., Matricardi, P., Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery. Soft Matter, 8, 45, 11557–11564, 2012.
131. Singhvi, G., Hans, N., Shiva, N., Kumar Dubey, S., Xanthan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.
132. Boudoukhani, M., Yahoum, M.M., Lefnaoui, S., Moulai-Mostefa, N., Banhobre, M., Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm. J., 27, 8, 1127–1137, 2019.
133. Baimark, Y. and Srisuwan, Y., Preparation of polysaccharide-based microspheres by a water-inoil emulsion solvent diffusion method for drug carriers. Int. J. Polym. Sci., 2013, 6, 2013.
134. Wang, W., Liu, X., Xie, Y., Zhang, H., Yu, W., Xiong, Y., Xie, W., Ma, X., Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J. Mater. Chem., 16, 3252–3267, 2006.
135. Saravanakumar, G., Jo, D.-G., Park, J.H., Polysaccharide-Based Nanoparticles: A Versatile Platform for Drug Delivery and Biomedical Imaging. Curr. Med. Chem., 19, 19, 3212–29, 2012.
136.