Self-Healing Smart Materials. Группа авторов
Читать онлайн книгу.coatings, it seems that the next years this research field will continue growing steadily, and reach end-user applications in a near future.
References
1. Wool, R.P., Material response and reversible cracks in viscoelastic polymers. Polym. Eng. Sci., 18, 14, 1057–1061, 1978.
2. Jud, K., Kausch, H.H., Williams, J.G., Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci., 16, 1, 204–210, 1981.
3. Dry, C.M. and Sottos, N.R., Passive smart self-repair in polymer matrix composite materials. Proc. SPIE 1916, Smart Structures and Materials 1993: Smart Materials, 438–444, https://doi.org/10.1117/12.148501
4. Dry, C.M. and McMillan, W., Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers. Proc. SPIE 2718, Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, 448–451, 1996.
5. Pascault, J.-P., Sautereau, H., Verdu, J., Williams, R.J.J., Thermosetting Polymers, Marcel Dekker, New York, 2002.
6. Brazel, C.S. and Rosen, S.L., Fundamental principles of polymeric materials, Wiley, Hoboken, New Jersey, 2012.
7. Francis, R. (Ed.), Recycling of Polymers: Methods, Characterization and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016.
8. World Economic Forum’s Global Agenda Council on Emerging Technologies, The top 10 emerging technologies for 2013, https://www.weforum.org/agenda/2013/02/top-10-emerging-technologies-for-2013/, 2013.
9. World Economic Forum’s Meta-Council on Emerging Technologies, The top 10 emerging technologies for 2015, https://www.weforum.org/agenda/2015/03/top-10-emerging-technologies-of-2015-2/, 2015.
10. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R., Self-Healing Polymers and Composites. Annu. Rev. Mater. Res., 40, 1, 179–211, 2010.
11. Billiet, S., Hillewaere, X.K.D., Teixeira, R.F.A., Du Prez, F.E., Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun., 34, 4, 290–309, 2013.
12. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., Autonomic healing of polymer composites. Nature, 409, 6822, 794–797, 2001.
13. Kessler, M.R., Sottos, N.R., White, S.R., Self-healing structural composite materials. Compos. Part Appl. Sci. Manuf., 34, 8, 743–753, 2003.
14. Wu, D.Y., Meure, S., Solomon, D., Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci., 33, 5, 479–522, 2008.
15. Luo, X., Ou, R., Eberly, D.E., Singhal, A., Viratyaporn, W., Mather, P.T., A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion. ACS Appl. Mater. Interfaces, 1, 3, 612–620, 2009.
16. Hayes, S.A., Jones, F.R., Marshiya, K., Zhang, W., A self-healing thermosetting composite material. Compos. Part Appl. Sci. Manuf., 38, 4, 1116–1120, 2007.
17. Liu, Y.-L. and Chuo, T.-W., Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem., 4, 7, 2194, 2013.
18. Denissen, W., Winne, J.M., Du Prez, F.E., Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci., 7, 1, 30–38, 2016.
19. Roy, N., Bruchmann, B., Lehn, J.-M., DYNAMERS: Dynamic polymers as self-healing materials. Chem. Soc. Rev., 44, 11, 3786–3807, 2015.
20. Ishida, K. and Yoshie, N., Synthesis of Readily Recyclable Biobased Plastics by Diels–Alder Reaction. Macromol. Biosci., 8, 10, 916–922, 2008.
21. Capelot, M., Montarnal, D., Tournilhac, F., Leibler, L., Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. J. Am. Chem. Soc., 134, 18, 7664–7667, 2012.
22. Mauldin, T.C. and Kessler, M.R., Self-healing polymers and composites. Int. Mater. Rev., 55, 6, 317–346, 2010.
23. Hansen, C.J., Wu, W., Toohey, K.S., Sottos, N.R., White, S.R., Lewis, J.A., Self-Healing Materials with Interpenetrating Microvascular Networks. Adv. Mater., 21, 41, 4143–4147, 2009.
24. Brown, E.N., Sottos, N.R., White, S.R., Fracture testing of a self-healing polymer composite. Exp. Mech., 42, 4, 372–379, 2002.
25. Patel, A.J., Sottos, N.R., Wetzel, E.D., White, S.R., Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos. Part Appl. Sci. Manuf., 41, 3, 360–368, 2010.
26. Rule, J.D., Sottos, N.R., White, S.R., Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48, 12, 3520–3529, 2007.
27. Cho, S.H., Andersson, H.M., White, S.R., Sottos, N.R., Braun, P.V., Polydimethylsiloxane-Based Self-Healing Materials. Adv. Mater., 18, 8, 997–1000, 2006.
28. Keller, M.W., White, S.R., Sottos, N.R., A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater., 17, 14, 2399–2404, 2007.
29. Keller, M.W. and Sottos, N.R., Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. Exp. Mech., 46, 6, 725–733, 2006.
30. Kumudinie, C. and Mark, J.E., Tearing energies for in-situ reinforced poly(dimethylsiloxane) networks. Mater. Sci. Eng. C, 11, 1, 61–66, 2000.
31. Yuan, Q.W. and Mark, J.E., Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces. Macromol. Chem. Phys., 200, 206–220, 1999.
32. Kim, D.-M., Cho, Y.-J., Choi, J.-Y., Kim, B.-J., Jin, S.-W., Chung, C.-M., Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating. Materials, 10, 9, 1079, 2017.
33. Yin, T., Rong, M., Zhang, M., Yang, G., Self-healing epoxy composites—Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos. Sci. Technol., 67, 2, 201–212, 2007.
34. Yin, T., Rong, M.Z., Zhang, M.Q., Self-Healing of Cracks in Epoxy Composites. Adv. Mater. Res., 47–50, 282–285, 2008.
35. Pascu, O., Garcia-Valls, R., Giamberini, M., Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. Polym. Int., 57, 8, 995–1006, 2008.
36. Guadagno, L., Raimondo, M., Naddeo, C., Longo, P., Mariconda, A., Binder, W.H., Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct., 23, 4, 045001, 2014.
37. Guadagno, L., Raimondo, M., Vietri, U., Naddeo, C., Stojanovic, A., Sorrentino, A., Binder, W.H., Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites. Int. J. Aerosp. Eng., 2016, 1–10, 2016.
38. Lee Hia, I., Chan, E.-S., Chai, S.-P., Pasbakhsh, P., A novel repeated self-healing epoxy composite with alginate multicore microcapsules. J. Mater. Chem. A, 6, 18, 8470–8478, 2018.
39. Yang, J., Keller, M.W., Moore, J.S., White, S.R., Sottos, N.R., Microencapsulation of Isocyanates for Self-Healing Polymers. Macromolecules, 41, 24, 9650–9655, 2008.
40. Huang, M. and Yang, J., Facile microencapsulation of HDI for self-healing anticorrosion coatings. J. Mater. Chem., 21, 30, 11123, 2011.
41. He, Z., Jiang, S., An, N., Li, X., Li, Q., Wang, J., Zhao, Y., Kang, M., Self-healing isocyanate microcapsules for efficient