Mantle Convection and Surface Expressions. Группа авторов

Читать онлайн книгу.

Mantle Convection and Surface Expressions - Группа авторов


Скачать книгу
Geophysical Journal International, 207(3), 1739–1766, doi:10.1093/gji/ggw356.

      9 Burke, K., & T. H. Torsvik (2004). Derivation of Large Igneous Provinces of the past 200 million years from long‐term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227(3–4), 531–538.

      10 Burke, K., B. Steinberger, T. H. Torsvik, & M. A. Smethurst (2008). Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary. Earth and Planetary Science Letters, 265(1–2), 49–60, doi:10.1016/j.epsl.2007.09.042.

      11 Cammarano, F., S. Goes, P. Vacher, & D. Giardini (2003). Inferring upper‐mantle temperatures from seismic velocities. Physics of the Earth and Planetary Interiors, 138(3), 197–222, doi:10.1016/S0031‐9201(03)00156‐0.

      12 Capdeville, Y., Y. Gung, & B. Romanowicz (2005). Towards global earth tomography using the spectral element method: a technique based on source stacking. Geophysical Journal International, 162(2), 541–554, doi:10.1111/j.1365‐246X.2005.02689.x.

      13 Chambat, F., Y. Ricard, & B. Valette (2010). Flattening of the Earth: further from hydrostaticity than previously estimated. Geophysical Journal International, 183(2), 727–732, doi:10.1111/j.1365‐246X.2010.04771.x.

      14 Christensen, U. R., & D. A. Yuen (1985). Layered convection induced by phase transitions. Journal of Geophysical Research: Solid Earth, 90(B12), 10,291–10,300, doi:10.1029/JB090iB12p10291.

      15 Conrad, C. P., B. Steinberger, & T. H. Torsvik (2013). Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature, 498(7455), 479–482, doi:10.1038/nature12203.

      16 Cottaar, S., & V. Lekic (2016). Morphology of seismically slow lower‐mantle structures. Geophysical Journal International, 207(2), 1122–1136, doi:10.1093/gji/ggw324.

      17 Dahlen, F. A., & J. Tromp (1998). Theoretical Global Seismology, Princeton University Press.

      18 Davaille, A., F. Girard, & M. Le Bars (2002), How to anchor hotspots in a convecting mantle? Earth and Planetary Science Letters, 203(2). 621–634, doi:10.1016/S0012‐821X(02)00897‐X.

      19 Davies, D. R., S. Goes, & H. C. P. Lau (2015), Thermally Dominated Deep Mantle LLSVPs: A Review. In A. Khan and F. Deschamps (Eds.), The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, pp. 441–477, Springer International Publishing, Cham, doi:10.1007/978‐3‐319‐15627‐9_14.

      20 Deng, J., & K. K. M. Lee (2017). Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nature Communications, 8(1), 1997, doi:10.1038/s41467‐017‐02263‐z.

      21 Domeier, M., P. V. Doubrovine, T. H. Torsvik, W. Spakman, & A. L. Bull (2016). Global correlation of lower mantle structure and past subduction. Geophysical Research Letters, 43(10), 4945–4953, doi:10.1002/2016GL068827.

      22 Durand, S., E. Debayle, Y. Ricard, C. Zaroli, & S. Lambotte (2017). Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophysical Journal International, 211(3), 1628–1639, doi:10.1093/gji/ggx405.

      23 Fei, Y., J. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, & K. Funakoshi (2004). Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B2).

      24 Forte, A. M., & J. X. Mitrovica (2001). Deep‐mantle high‐viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049–1056.

      25 Forte, A. M., A. M. Dziewonski, & R. L. Woodward (1993), Aspherical Structure of the Mantle, Tectonic Plate Motions, Nonhydrostatic Geoid, and Topography of the Core‐Mantle Boundary. In Dynamics of Earth’s Deep Interior and Earth Rotation, pp. 135–166, American Geophysical Union (AGU). doi:10.1029/GM072p0135.

      26 French, S. W., & B. Romanowicz (2015), Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567). 95–99, doi:10.1038/nature14876.

      27 French, S. W., & B. A. Romanowicz (2014), Whole‐mantle radially anisotropic shear velocity structure from spectral‐element waveform tomography. Geophysical Journal International, 199(3). 1303–1327, doi:10.1093/gji/ggu334.

      28 Frost, D. A., E. J. Garnero, & S. Rost (2018), Dynamical links between small‐ and large‐scale mantle heterogeneity: Seismological evidence. Earth and Planetary Science Letters, 482, 135–146, doi:10.1016/j.epsl.2017.10.058.

      29 Fukao, Y., & M. Obayashi (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research (Solid Earth), 118(11), 2013JB010,466–5938, doi:10.1002/2013JB010466.

      30 Ghosh, A., T. W. Becker, & S. J. Zhong (2010). Effects of lateral viscosity variations on the geoid. Geophysical Research Letters, 37(1), 01,301, doi:10.1029/2009GL040426.

      31 Girard, J., G. Amulele, R. Farla, A. Mohiuddin, and S.‐i. Karato (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science, 351(6269), 144–147, doi:10.1126/science.aad3113.

      32 Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732, doi:10.1093/biomet/82.4.711.

      33 Hager, B. H., & R. J. O’Connell (1981). A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86(B), 4843–4867, doi:10.1029/JB086iB06p04843.

      34 Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, & A. M. Dziewonski (1985). Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541–545, doi:10.1038/314752a0.

      35 He, Y., & L. Wen (2009). Structural features and shear‐velocity structure of the “Pacific Anomaly.” J. Geophys. Res., 114(B2), B02,309, doi:10.1029/2008JB005814.

      36 Jellinek, A. M., & M. Manga (2002). The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418(6899), 760–763, doi:10.1038/nature00979.

      37 Jenkins, J., A. Deuss, & S. Cottaar (2016). Converted phases from sharp 1000 km depth mid‐mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters, 459, 196–207, doi:10.1016/j.epsl.2016.11.031.

      38 Jordan, T. H., P. Puster, & G. A. Glatzmaier (1993). Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions. Science, 261, 1427–1431.

      39 Kaercher, P., L. Miyagi, W. Kanitpanyacharoen, E. Zepeda‐Alarcon, Y. Wang, D. Parkinson, R. A. Lebensohn, F. De Carlo, & H.‐R. Wenk (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145, doi:10.1016/j.epsl.2016.09.030.

      40 Karato, S.‐i., & B. B. Karki (2001). Origin of lateral variation of seismic wave velocities and density in the deep mantle. Journal of Geophysical Research: Solid Earth, 106(B10), 21,771–21,783, doi:10.1029/2001JB000214.

      41 Katsura, T., H. Yamada, T. Shinmei, A. Kubo, S. Ono, M. Kanzaki, A. Yoneda, M. J. Walter, E. Ito, S. Urakawa, K. Funakoshi, & W. Utsumi (2003). Post‐spinel transition in Mg2SiO4 determined by high P–T in situ X‐ray diffractometry. Physics of the Earth and Planetary Interiors, 136(1–2), 11–24.

      42 Kido, M., D. A. Yuen, O. Čadek, & T. Nakakuki (1998). Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole‐mantle versus blocked‐flow situations. Physics of the Earth and Planetary Interiors, 107(4), 307–326.

      43 King, S. D., & G. Masters (1992). An inversion for radial viscosity structure using seismic tomography. Geophysical Research Letters, 19(15), 1551–1554, doi:10.1029/92GL01700.

      44 Komatitsch, D., & J. Tromp (2002). Spectral‐element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390–412, doi:10.1046/j.1365‐246X.2002.01653.x.

      45 Kustowski,


Скачать книгу