Роман с Data Science. Как монетизировать большие данные. Роман Зыков
Читать онлайн книгу.ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам она поможет расширить свой кругозор и начать применять практики, о которых вы раньше не задумывались – и это выделит вас среди профессионалов такой непростой и изменчивой области.
Как читать эту книгу
Я писал эту книгу так, чтобы ее можно было читать непоследовательно. Краткое содержание каждой главы:
Глава 1 «Как мы принимаем решения» описывает общие принципы принятия решения, как данные влияют на них.
Глава 2 «Делаем анализ данных» вводит общие понятия – с какими артефактами мы имеем дело, когда анализируем данные. Кроме того, с этой главы я начинаю поднимать организационные вопросы анализа данных.
Глава 3 «Строим аналитику с нуля» рассказывает об организации процесса построения аналитики: от первых задач и выбора технологии, заканчивая наймом.
Глава 4 «Делаем аналитические задачи» – полностью о задачах. Что такое хорошая аналитическая задача, как ее проверить. Технические атрибуты таких задач – датасеты, описательные статистики, графики, парный анализ, технический долг.
Глава 5 «Данные» о том, что говорят о данных – объемы, доступы, качество и форматы.
Глава 6 «Хранилища данных» рассказывает, зачем нужны хранилища, какие они бывают, также затрагиваются популярные системы для Big Data – Hadoop и Spark.
Глава 7 «Инструменты анализа данных», полностью посвящена наиболее популярным способам анализа от электронных таблиц в Excel до облачных систем.
Глава 8 «Алгоритмы машинного обучения» является базовым введением в машинное обучение.
Глава 9 «Машинное обучение на практике» является продолжением предыдущей главы: даются лайфхаки, как изучать машинное обучение, как работать с машинным обучением, чтобы оно приносило пользу.
Глава 10 «Внедрение ML в жизнь: гипотезы и эксперименты» рассказывает о трех видах статистического анализа экспериментов (статистика Фишера, байесовская статистика и бутстрэп) и об использовании А/Б-тестов на практике.
Глава 11 «Этика данных». Я не смог пройти мимо этой темы, наша область начинает все больше и больше регулироваться со стороны государства. Здесь поговорим о причинах этих ограничений.
Глава 12 «Задачи и стартапы» рассказывает об основных задачах, которые я решал в e-commerce, а также о моем опыте сооснователя проекта Retail Rocket.
Глава 13 «Строим карьеру» больше предназначена для начинающих специалистов – как искать работу, развиваться и даже когда уходить дальше.
Глава 1
Как мы принимаем решения
«Итак, главный принцип – не дурачить самого себя. А себя как раз легче всего одурачить. Здесь надо быть очень внимательным. А если вы не дурачите сами себя, вам легко будет не дурачить других ученых. Тут нужна просто обычная честность.
Я хочу пожелать вам одной удачи – попасть в такое место, где вы