Smart Grid and Enabling Technologies. Frede Blaabjerg

Читать онлайн книгу.

Smart Grid and Enabling Technologies - Frede Blaabjerg


Скачать книгу
thermal systemsSFSolar FuelsSNGSynthetic Natural GasSLIstarting, lighting, and ignitionSoCState of ChargeSoHState of HealthSGCCSmart Grid Consumer CollaborativeTSOtransmission system operatorToUTime of use pricingTEPCOTokyo Electric Power Co.TSRtip speed ratioTD learningTemporal difference learningTFthin-filmsTESThermal Energy StorageTRATheory of Reasoned ActionTPBTheory of Planned BehaviorTAMTechnology Acceptance ModelTTMTranstheoretical ModelUNFCCCUnited Nations Framework Convention on Climate ChangeVSCVoltage Source ConvertersVSGVirtual synchronous generatorVICvirtual impedance controlVPNvirtual private networkVSIvoltage source inverterVMD-CNNVariational mode decomposition -Convolutional neural networkVARMAXVector autoregressive moving Average with exogenous inputsV2Gvehicle-to-gridG2Vgrid-to-vehicleV2Hvehicle to homeV2Vvehicle to vehicleVAMValue-based Adoption ModelWASAwide-area situational awarenessWANWide Area NetworkWAMSWide Area Monitoring SystemsWLANwireless local area networkWPT-RFWavelet packet transform-Random forestWESNWavelet echo state networksWT-TES-WNNWavelet transform combined with Holt-Winters- Weighted nearest-neighbor modelWNNWeighted nearest neighborsWCDWorld Commission on DamsWECswave energy convertersWPTwireless power transferXMLExtensible Markup LanguageXGboost-DWTExtreme gradient boosting- Discrete wavelet transformXGBoostExtreme gradient boostingZEBszero energy buildings

      About the Companion Website

      Smart Grid and Enabling Technologies is accompanied by a companion website:

      www.wiley.com/go/ellabban/smartgrid flast02

      The website includes:

       PowerPoint Slides for Lecturers

      Scan this QR code to visit the companion website.

flast02

      The electric power system is the largest and best engineering invention and achievement in human history. However, this grid paradigm faces serious challenges with regard to the increasing demand for electricity, the expanding penetration of intermittent renewable energies, and the need to respond to emerging needs such as wide usage of electric vehicles. The newly faced and expected challenges and expectations from the grid are forcing drivers to transform the current power system into a smarter grid. Smart grid (SG) is a new paradigm shift that combines the electricity, information, and communication infrastructures to create a more reliable, stable, accessible, flexible, clean, and efficient electric energy system. The SG comprises two main parts, SG infrastructure, and smart applications and operation. SG infrastructure entails a smart power system, information technology (IT), and communication system, while SG applications and operation are categorized into fundamental and emerging areas. The fundamental ones refer to energy management strategies, reliability models, security, privacy, and demand‐side management (DSM). Emerging applications include the wide deployment of electric vehicles and mobile charging and storage stations. All this indicates that SGs are characterized by automated energy generation, delivery, monitoring, and consumption with stakeholders from smart utilities, markets, and customers.

      Initially in this chapter, the principles of current electrical power systems will be briefly discussed. After that, the implications of the transformation trend toward SG architecture will be investigated. Following this, SGs are addressed in greater depth, covering fundamentally diverse concepts and classifications. Lastly, some SG architectures will be highlighted and the future challenges and directions will be addressed.

      The SG is the solution to overcome the aforementioned challenges while also responding to the current and future humanity energy expectations. SG's implementation will not only have environmental benefits through high penetration of renewable sources, but will also have significant regional, national, and global impacts related to achieving a more reliable, efficient, and economic energy system. The SG paradigm integrates a variety of modern advanced technologies such as smart sensors and measurements, advanced communication and information, edge computing and control. This paradigm allows a flexible and reliable electricity system with bi‐directional power and information flows [3]. The structures of the SG anticipate and respond to electric system disturbances, optimize asset utilization, and operate efficiently. SG houses all generation and storage options, which hinders the dependency on peak demand back‐up power stations – thus, cutting significant costs related to the generation, transmission, and distribution. Furthermore, SG enables active participation of customers, new products, services, and markets – thus can support the uptake of new industries. SG functions resiliently against attacks and natural disasters, delivers power quality for the digital economy‐ thus, creating new jobs and regenerating the economy at a time of financial crisis. The SG is a power network that contains distributed nodes, which operate under the pervasive control of smart subsystems, so‐called smart microgrids. A microgrid is a small‐scale version of the electric grid, however possessing distributed generation and potentially energy storage (ES). Microgrids can operate in a grid‐connected mode, islanded mode, or in both modes which improve the grid's reliability, controllability, and efficiency. Widespread installations of microgrids enable a faster transformation to the SG paradigm from the current grid infrastructure [4].

      1.2.1 Electrical Power Generation


Скачать книгу